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ABSTRACT

On Affine transformations in continuous and in discrete spaces

A quasi-affine application, being the integer part of a rational affine application, is the discretized form
of an affine application. This article is dedicated to the study of conservation of same properties of affine
applications (Preservation of barycenter, preservation of distance, existence of a fixed point) by quasi-affine

applications. The quasi-affine applications studied are discrete translations, discrete homotheties as well as
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INTRODUCTION

En géométrie, I'adjectif “discret” signifie qu’on
s'intéresse a la géométrie des ensembles Z, Z?, Z3 et dans
le cas le plus général a Z™. Inversement, la géométrie des
ensembles R,R?, R3, . . ., R" est appelée géométrie
continue. Ainsi, les espaces Z, Z?, 73,..., Z™ sont appelés
les espaces discrets. Inversement, les espaces R, R?, R3,
..., R™ sont des espaces continus.

Une application quasi-affine est le correspondant
de l'application affine dans les espaces discrets. C'est le
discrétisé de I'application affine. Plusieurs propriétés des
applications affines ne se conservent pas dans le cas
discret. La caractérisation des applications affines par le
barycentre n’est pas toujours vérifiée pour les
applications quasi-affines. Toutes ces applications sont la
forme discréte des applications continues (translation,
homothétie et rotation). Cette discrétisation fait perdre

aux applications quelques-unes de leurs propriétés.

Dans ce papier, le concept d’application affine

discrete est rappelé. Ensuite les propriétés des

applications affines discretes sont étudiées en vue de les
comparer avec les propriétés des applications affines
continues.

PRELIMINAIRES SUR LES APPLICATIONS QUASI-
AFFINES

Dans cet article, les concepts et notations

suivants sont utilisés :

- Si x est un réel, |x] représente la partie
entiere de x qui est le plus grand entier
inférieur et égal a x.

X

- Si x et y sont deux entiers, lereprésente

respectivement le quotient de x pary.

- Six(xy,x,)ety(yy,y,) sont dans Z2, on
définit respectivement les distances 4-
connexes et 8-connexes par :

2

d,(x,y) ZZ‘yi _Xi‘ et
i=1

dy (%, ) = max]y, -

[KLETTE et ROSENFELD, 2004].
Application quasi-affine, application quasi-linéaire
Définition 1.
Une application quasi-affine F(AQA) est une
application discrete définie par ANDRES [ANDRES et
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JACOB-DA COL, 2007 ; NEHLIG, 1995 ; JACOB-DA COL,
2001] telle que :

fzzz EZZ
, [ax+by+eJ
x =|—

01"

avec x,y,x,y’ entiers et a,b,c,d,e, f, ® des entiers et

lcx+?i)y+fJ
w

avec o > 0. Elle est la partie entiére d’'une application
affine rationnelle.
Définition 2.
Une application quasi-linéaire F(AQL) est une
application linéaire discrete définie par :
f: 72 — 72
o = ax + by
) :
|_)
y y = lcx + dyJ
W

avec x,y,x’,y’ entiers et a,b,c,d, o des entiers et avec
o> 0 [BLOT et COEUJOLLY, 2009 ; JACOB-DA CO et
TELLIER, 2009]. Elle est la partie entiere d’une application

linéaire rationnelle. La matrice A = l(a b) est
w\c d

appelée la matrice de I'application quasi-linéaire.
Définition 3.

Une application quasi-affine est bijective si et
seulementsi w < dét(A).
Définition 4.

Considérons une famille de points {4; }1<;<, de

Z%(ouZ3) et les scalaires {4; }1<j<n de Z tels que

n
Zﬂi # 0,on appelle barycentre discret de la famille
i-1

n —_—
(A;,2; )1<i<n e point G unique tel que : Zﬂfl GA =0
i

On montre que G est donné par

L

le point

G

Exemple 1.

Considérons deux points de Z2, A(1,2) et B(2,-2)
affectés respectivement des scalaires 3 et 2. Le point

G (13.1+2-4J , 13-2+2-(_2)J) avec i/ﬁti —320 est le
i=1

3 3

barycentre des points A et B. D’'ou G (lg] ) EJ)

Proposition 1.

Une application quasi-affine f ne conserve

nécessairement pas le barycentre discret i.e

V G barycentre des points pondérés (A;,4; )1<i<n, G =
f(G) n’est pas nécessairement le barycentre des points
pondérés (f(4;), 4; )1<isn-

Preuve 1.

En effet considérons f une application quasi-
affine et u son application quasi-linéaire associée. Soit
(A;j,A;)1<i<n une famille de points pondérés avec

n
Zﬂi =1. Le barycentre G de points {A};<;<, Vérifie
i=1

n . n N

Z/’LIGAi =0 et donc ZAIU(GAI):O En
i i

utilisant U(@;) et si w=1, on en déduit que

z&i(f (G)f(A))=0 ce qui montre que f conserve le

barycentre des points (f(4;), 4; )1<i<n-

En outre si w #+ 1, la relation U(GAi) est vérifiée pour

w =pgcd(a,b,c,d) caril se ramene au cas précédent et
n‘est pas vérifiée dans les autres cas du fait que
I’application linéaire associée a I'application quasi-affine
ne vérifie pas la linéarité. D’ou I'application quasi-affine
ne conserve pas toujours le barycentre. m

Quelques applications quasi-affines usuelles
Translations discretes

» Translation des points isolés

Considérons T(|y4q|v+p)) Paramétrée par un

couple (@, B)eR?. Un critére basé sur la distance entre
Tau,p)(P) et T(jy+a)v+p)) (P) doit permettre de choisir un

couple (a, B). Le point le plus proche de (Py4y, Py4y) €st

(PX +Lu +%J P, +LV+%D [ANDRES et

JACOB-DA COL, 2007].

le point
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Une translation discréte adaptée peut donc
s’écrire :
T:7* — 72
1 1
= (s foe 3+ )

Exemple 2.

Soit le vecteur V = (-5,6) € Z?, pour tout
couple (x,y) € Z?, On définit la translation discréte dans

72 par
1 1
T(—s.e)(XIY)=(x+ —5+§J,y+ 6+§J)
_( + 9 N 13)
BRI RN Y
_( + 9J N 13)
BRI AN Y
=(x~-5y+6)

La Figure 1 illustre la translation de vecteur (15,-4) des
points de D c Z?

30

-15 -10 -5 0 5 10 15

Figure I. Translation des points isolés.
> Translation discréte d’objets complexes
Définition 5.
On appelle une droite naive, une droite discrete
définie par
D(a,b,y) ={(x,y) € Z*/y < ax + by
<y + max(lal, |b|)}

aveca,b €Z

La translation de point isolé differe de la
translation d’objets plus complexes. Examinons le cas
d’une translation de droite discrete. Soit une droite
euclidienne

D: ax + by + ¢ = 0, avec pour simplifier a, b, c entiers et
(a,b) € Z2 — {(0,0)}.

Soit A={(x,y)EZZ:_7bSax+by+c<§} sa
discrétisation naive centrée. Cette droite discrete naive
est définie par 0 < ax + By +y < max (|«f, [B]).

Dans ce cas max(|al, |B]) = b et le fait de définir A par
0<ax+by+c+ g < b signifie que nous choisissons les

points discrets les plus proches de la droite D.

A titre d’exemple, la translation de la droite
euclidienne D par le vecteur (u,v) est la droite D’:
D":Tyw»(D):alx —u) + b(y —v) + ¢ = ax + by +
c—au—bv=0
La discrétisation naive de cette droite est la droite

discréte A’ telle que

A'={(x,y)EZZ:TSax+by+c—au—bv<E}

Si les points sont déplacés isolement, on obtient la droite
naive :

R R
= {(x,y) € 72: _Tb
Sax+by+c—alu+%]—blv+%]

<”}
2

Isolement, chaque point de la droite a bien été déplacé
d’un vecteur (lu + %J , [v + %J) On peut constater que la

droite T(l“*'%J'l"*%J) (A) est différente de la droite discrete

A'qui est la meilleure approximation du résultat euclidien
Visé.
Considérons par exemple le droite D : x - 4y = O,

on opére une translation discrete de vecteur (%,%)
O”aiA'={(x.y)EZZ: -2 Sx—4y—l+3<2}
3 3
N={(xy)er? —2<x—4y+1<2}
T A
(urdfpeip

= {(x,y) €7%: -2
< 4 ! + 1 4 1 + ! <2
=7 yl32J l32J }

={(x,y)EZZ: —25x—4y—l§J—4l§J<2}
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={(x,y) €7?: —2<x—-4y—-0-4.0<2}
={(x,y) €Z*: —2<x—4y <2}

Homothétie discréte [ANDRES et JACOB-DA COL, 2007]

Soit une image initiale J de taille J x K que nous
désirons agrandir par la transformation géométrique A
en une image finale F de taille M x N avec M>J et N>K.
Un agrandissement, en tant qu’opération injective, ne se
décrit pas trés bien par une application quasi-affine mais

dans ce cas, La
transformation inverse R est une application quasi-affine

I'opération inverse en est une.

contractante et se décrit par :

RF—1

V)

transformation

- e = (2[5

Cherchons a  définir la
géométrique, on a x = lJML'J soit 0</,-M, <M. C'est
simplement une droite naive dans I'espace (x, x"). Nous

avons des expressions similaires pour y et y’. En posant

C(x) = |22 et n(y) = |25

A:l > F
(x,y) — [C(x),C(x +1) = 1] X [L(y), Ly + 1) — 1]

Ny—-K

J nous avons :

La Figure 2 illustre I'homothétie discrete de facteur
15,13
4 37

Alxy)

. Image fi
Image initiale G £9c i

Agrandissement d'un facteur 15/4

i i o]

il e |

N

Agrandissement d'un facteur 1373

Figure 2. Homothétie discrete de facteur 175 X % [ANDRES et JACOB-DA
COL, 2007].

Rotations discrétes
> Rotation pythagoricienne [THIBAULT, 2010]

La rotation pythagoricienne est une rotation

discrete bijective définie par

RP(k): 7% — 772

b
bx—ay+-
x' = [—2

b+1 ] avec a, b, k des entiers

ax+by+é
y/ — 2
b+1

tels que a=2k+1 et b=2k(k+1).

(x,y) —

Exemple 3.
L’application discréte

RP(1):7? — 77

X' = l4x—iy+2]

’r l3x+4y+2J

définit une rotation

(x,y) —

pythagoricienneaveck =1, a =3 etbh =4

La Figure 3 illustre cette rotation.

a0

15 =
[ o
10 I DD
| piteel
g= Sas
gl
g8
-10 -5 DD!D L 10 15
saE [
0
i

-10

Figure 3. Rotation Pythagoricienne od k=,

immédiatement  que

Nous
a? + b%? = (b + 1)2. Le non de rotation provient duriplet

(a, b, b+1) qui est appelé triplet pythagoricien. L'ensemble

remarquons

{2k +1,2k(k + 1), 2k(k + 1) + 1): k € Z} décrit tous
les triplets pythagoriciens de la forme (a,b,b+1). Cette
rotation est intéressante pour différentes raisons :

On peut démontrer qu’elle est bijective, c’est-a-
dire : RP(k)*=RP(-k-1), la preuve est assez difficile a établir
[THIBAULT, 2010]

Elle permet a un réseau de points discrets d’avoir une
rotation optimale égale a la rotation euclidienne. En effet,
par construction, les points discrets de coordonnées
m(a, b)n(b, —a) et (b + 1)(m,n) avec (m,n) € Z?, ont
la méme image par la rotation pythagoricienne et la
rotation euclidienne de méme angle. Les points noirs au
centre de pixels représentent les points qui ont une

rotation optimale via la rotation pythagoricienne RP(1).
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Une derniére propriété provient du fait que la
rotation pythagoricienne n’est rien d’autre qu’une
rotation discréte réelle tronquée. En supposant une
répartition aléatoire des points discrets apres rotation, le
critére de distance doit par conséquent nous donner les

V2
valeurs proches de - et

%fol fol Jx? + yZdxdy = fog f()w%pzdpde
== (2VZ+In(3+2V2)
en distance maximale et moyenne.

Nous pouvons remarquer ce qui suit :

En général, RP(i)oRP(j) n’est pas une rotation

pythagoricienne, ni méme une application quasi-affine.
Cette rotation n’est définie que pour les angles 8, =

2k+1 )
2k(k+1)’"

arctg(

> Rotation quasi-transvection

Construisons une rotation discréete bijective en se
servant d’une décomposition de la rotation quasi-
transvection [ANDRES, 1996]. Le principe de cette
rotation discréete a été introduit par REVEILLES [1991].
Une rotation euclidienne peut se décomposer en trois
transvections euclidiennes :

Rot(0, (xg,y9) = THoTVoTH

! !

(cos@ —sinH) _[1 i 3( 0 1 _0,(
sinf  cosf B\= 1) B
0 1 w 0 1

Ou: ®>0 est une valeur arbitraire réelle, a=msino,

.0 6
(x':wsmg et B'=(DCOSE.

La rotation quasi-transvection consiste a
remplacer chaque transvection euclidienne par une

application quasi-affine appelée quasi-transvection.

Considérons une transvection euclidienne horizontale
définie de la maniére suivante :

TH: R? — R?
xr = x+ lty+vJ . 4 ;
(x,y) — m avec t,u, v des entiers,
y' =y
u>0.

t , .
La valeur - est appelée la pente de la quasi-

transvection et v la constante de translation. La quasi-
transvection correspond simplement a un décalage dans
les lignes ou les colonnes; par conséquent une quasi-

transvection est toujours une application discrete
bijective.

La rotation quasi-transvection de centre (xo, Yo)

et d’angle 0 est définie par :
RQT(Q, xo:}’o): ZZ - Zz

(x,y) = (QTH' > QTV' > QTH")(x, y)

Avec
b' — 2y,a’
QTH' = QTH(—a',b’, — )
w — 2ax,
QTV' = QTV(a, w, lTJ

Ou: 6, xo, Yo sont des réels et a, a’, b’,& des entiers
vérifiant 'expression :

w =215
a=|w.sind|

.0 9
a = la).smEJ eth' = la). COSEJ

CARACTERISATION DES APPLICATIONS AFFINES
DANS L'ESPACE CONTINU
Dans cette section, il nous semble nécessaire de
commencer par une caractérisation des applications
affines en vue d’une comparaison. Les applications
discretes retenues sont celles quasi-affines car elles se
rapprochent des applications affines.

Caractérisations des applications affines

Les applications affines dans les espaces

continues sont les plus connues. Ce paragraphe
consistera a dresser un tableau caractérisant celles-ci. On
se focalisera sur les applications affines conservant la

distance, i.e les isométries, et celles ayant un point fixe.

Les isométries affines de I'espace affine euclidien
de dimension 1 sont les translations et les symétries
centrales.

Les isométries affines du plan affine euclidien
sont les translations, les rotations, les réflexions et les
symétries glissées. On peut dresser le Tableau 1
suivant [MICHELE, 2006] :
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Tableau |-Classification des isométries de R2

. . P Symétries
Translations Rotations  Réflexions y .
glissées
Ensemble pas de point  ununique unedroite pasde
invariant invariant point fixe  de points point fixe
fixes
Droites une Pas de et une une
invariantes directionde  droite direction unique
droites invariante  de droites  droite
invariante
Décomposition 2 droites 2 droites 1 droite 3 droites
en réflexions paralléles sécantes

Les isométries affines de I'espace euclidien a trois
dimensions sont les translations, les demi-tours, les demi-
tours glissés, les vissages, symétries centrales, les
réflexions, les réflexions glissées et les anti-rotations

(Tableau 2).

Tableau 2. Classification des isométries de R3

. . . Symétries
Translations Rotations Vissages v
centrales
Ensemble pas de point  Une Pas de Un
invariant invariant droite de points hyperplan
points fixes de points
fixes fixes
Droites une Pas de et une une
invariantes directionde  droite direction  unique
droites invariante  de droite
droites invariante
Décomposition 2 droites 2 droites 1 droite 3 droites
en réflexions paralleles sécantes

Etudes des applications discrétes

Translation pour un point isolé
Proposition 2.

Toute translation discréte de point isolé conserve
les distances discrétes d, et dg.

Preuve: En effet, V A(a,b),B(a,b’) € Z? tels que

T(A)et (B) € Z?,0na:

ds(T(A), T(B)) =
1 1

[v+3] o= [v+3]]

a’+lu+%J—a—lu+%“+|b’+

dy(T(A),T(B)) = |a' —al + b’ —b|
d.(T(A),T(B)) = d4(A,B)

Et pour

dg(T(A), T(B)) = max (|a’ + [u + %J —a-— [u +
o | s R i)

dg(T(A),T(B)) = max(|a’ — al; b’ — bl)
dg(T(A),T(B)) = dg(4,B)

Donc la translation discréte conserve les distances.

De la méme maniére, on montrera que les
translations discrétes dans Z3conservent les distances de
Z3

Proposition 3.

Les translations discretes des points isolés ne
laissent aucun point fixe

Preuve 2.

En effet, pour tout vecteur (u,v) # (0,0). En
considérant la translation T,y définie ci-dessus,
I'ensemble des points fixes V sera défini par V =
{(6,y) € Z%: Ty (x,¥) = (x, )}

Montrons que V est vide.

En effet, selon la définition

V={(xy) € Z%: Ty (x,y) = (x, )}

v={Cy e+ |u+s|y+|v+3) = n)
V= {(x,y) ETZ%x+ [u+%J =x ety+ lv+%J =y}
V= {(x,y) € Zz:lu+%l = 0ety+[v+§] = 0}
V=0

Remarque : Les autres points de I'objet restent fixes. Tout

point qui n’est considéré comme isolé n’est pas modifié

c’est-a-dire un point A tel que Tq(A,X)= 0.
Proposition 4.

Les angles sont conservés dans la translation
discrete des points isolés.

Translation discréte d'objets complexes

La translation de point isolé est une chose
différente de la translation d’objets plus complexes. Ici
nous nous reposons sur une meilleure approximation de
la translation affine euclidienne. Contrairement aux
translations affines, les translations discretes offrent une
multiplicité des solutions. Ainsi, il faut opérer un meilleur
choix pour n’est pas s’écarter de la réalité. Dans I’'exemple
traité ci-haut, on constate que la translation discrete de la
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droite ne correspond pas a la translation euclidienne de
la méme droite discrétisée.

Homothétie discréte

Dans la définition de I’'homothétie discréte, nous
remarquons qu’aucun point n’est fixe. Tout point de
I'image subit une augmentation de Ia taille.

Rotations discrétes
> Rotation pythagoricienne

La rotation pythagoricienne est une rotation
discréte bijective. Elle produit une rotation optimale
égale a la rotation euclidienne. Tous les points subissent
des rotations mais ceux d’une rotation optimale sont mis

en exergues.

Espaces continues Espaces discrets
Translation Conserve le barycentre Conserve le barycentre
Conserve l'alignement |- Conserve I'alignement des
des droites droites
Conserve les distances Conserve les distances
Préserve  l'orientation |- Préserve l'orientation des
des angles angles
Posséde plusieurs points | - Posséde au moins un point
fixes ou aucun point fixe | fixe car il faut tenir compte
de la translation des
points isoles ou de la
translation de  groupe
d'objets
Rotation Conserve le barycentre Nest défini que pour les
'21i 2k+1
Conserve  I'alignement angles B, = arCtg(Zk(kul)
des points e
n'est pas un proupe pomr
Conserve les distances i P ] _gI P P.
, e la composition (rotation
Préserve  I'orientation
pythagoricienne)
des angles ’ .
. ] ] ne conserve pas toujours
Posséde plusieurs points .
: o les distances
fixes ou ancun point fixe , .
- ne preserve pas toujours
les angles
Homothétie Posséde un point fixe de | Ne posséde aucun point fixe
1apport k un réel ou un | de rapport Lx]
complexe

Figure 4. Tableau comparatif des applications affines et des applications
quasi-affines

> Rotation quasi-transvection

C’est une rotation discrete bijective construite en
se servant d’'une décomposition de la rotation quasi-

transvection [ANDRES et JACOB-DA COL, 2007]. Le
principe de cette rotation discrete a été introduit par
REVEILLES [1991].

Une rotation euclidienne se décompose en trois

transvections euclidiennes.

Nous résumons cette étude de conversation des

propriétés par la proposition 2 et le Figure 4.
Proposition 5.

Soit f une application quasi-affine discrete définie
dans 72

Si f est une translation discréete alors f conserve le
barycentre, les distances, |'orientation des angles.

Si f est une rotation discréte alors f ne conserve pas
toujours les distances et les angles.

Si f est une homothétie discrete alors f ne possede aucun
point fixe.

Les résultats précédents sont résumés dans le
Figure4.

CONCLUSION

Les différentes définitions des applications
affines dans les espaces discrets ont permis d’établir la
comparaison sur la conservation de barycentre,
conservation de I'alignement des droites, conservation de
distances, la préservation de |'orientation des angles et

sur la possession de point fixe.

Les transformations affines conservent plusieurs
propriétés alors que celles discrétes n’en conservent pas
toutes. Cet article, axé sur une étude comparative de ces
applications dans les espaces continues et discrets, a
conduit aux résultats suivants :

- Les translations discretes conservent les
distances, les barycentres, les angles et tous
les points sont invariants. Ici, il y a lieu de
différencier celles des points isolés et des
objets complexes.

- Les rotations discretes ne préservent pas
toujours les angles et ne présentent pas la
structure de groupe car la composée de deux
rotations n’est pas une rotation. Il y a lieu de
préciser que ceci n’est pas valable pour la
rotation quasi-transvection. Celle-ci tend a se
rapprocher de la rotation continue. Et enfin,
I’'homothétie discréte ne possede pas.
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RESUME

Une application quasi-affine, étant la partie
entiere d’une application affine rationnelle, est la forme
discrétisée d’une application affine. Cet article est
consacré a l'étude de conservation des principales
propriétés des applications affines (conservation des
barycentres, conservation de distance, existence d’un
point fixe) par les applications quasi-affines. Les
applications quasi-affines étudiées sont les translations
discretes, les homothéties discrétes ainsi que les
rotations discretes.

Mots Clés

Géométrie discrete, application quasi-affine, application quasi-linéaire.

REFERENCES

ANDRESE. [1996]. The quasi-shear rotation. Discrete geometry for computer
imagery, (pp. 307-314). Verlag.

ANDRES E., JACOB-DA COL M.-A. [2007]. Géométrie discrete et images
numériques. (D. Coeurjolly, A. Montanvert, & J.-M. Chassery, Eds.)
Paris: Lavoisier.

BLOT V., COEUJOLLY D. [2009]. Quasi-affine Transformation in Higher
dimension. 15th International Conférence on Discrete Geometry for
Computer Imagery, LNCS. 5810. Montreal: Springer.

JACOB-DA CO M.-A., TELLIER P. [2009]. Quasi-linear transformations and
discrete tilings. Theoretical Computer Science, 410, 2126-2134.

JACOB-DA COL M.-A. [2011]. Applications quasi-affines et pavages du plan
discret. Theoretical Computer Science, 259(1-2), 245-269.

KLETTE R., ROSENFELD A. [2004]. Digital geometry, geometry methods for
digital pictures analysis. San Francisco: Morgan Kaufmann Publishers.

MICHELE A. ([2006]. Géomeétrie. Strasbourg: EDP Sciences.

NEHLIG P. [1995]. Applications quasi-affines : pavages par images
réciproques. Theorical Computer Science, 156, 1-38.

REVEILLES J.-P. [1991]. Géométrie discrete, calcul en nombres entiers et
analogique. Thése de doctorat, Université Louis Pasteur, Strasbourg,
France.

THIBAULT Y. [2010]. Rotations in 2D and 3D discrete spaces. These de
doctorat, Université Paris-Est, France.

] This wark 18 If open access,
licernged under & Creative Commaons AllFibution 4.0 Intermaliomal
Licemse, The ih'ilﬂht af ather Lhird ﬁll‘t'.' material in this artiele are
ineluded in the article’s Crealive Cammans licendse, unless indicalad
sltherwise in Lhe eradil line; if the material is pot includad under the
Creative Commans licende, users will nead Lo ablain parmigdion Mram the
licensa halder ba l‘!ﬂ-hﬂl’ut& t'lé material. Te view & capy al this licersea,
wigil htlp:.f.rtreallutardimn.t.arg.fliuﬂusf Iilff‘.nf

CONGOSCIENCES ~VOLUME 8] NUMBER 1 | MARCH 2020 http://www.congosciences.cd 8
© 2017 ACASTI and CEDESURK Online Journal. All rights



http://www.congosciences.cd/

