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ABSTRACT 

On Affine transformations in continuous and in discrete spaces 

A quasi-affine application, being the integer part of a rational affine application, is the discretized form 

of an affine application. This article is dedicated to the study of conservation of same properties of affine 

applications (Preservation of barycenter, preservation of distance, existence of a fixed point) by quasi-affine 

applications. The quasi-affine applications studied are discrete translations, discrete homotheties as well as 

discrete rotations.
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INTRODUCTION 

En géométrie, l’adjectif “discret” signifie qu’on 

s’intéresse à la géométrie des ensembles ℤ, ℤ2, ℤ3 et dans 

le cas le plus général à ℤ𝑛. Inversement, la géométrie des 

ensembles ℝ,ℝ2, ℝ3, . . ., ℝ𝑛 est appelée géométrie 

continue. Ainsi, les espaces ℤ, ℤ2, ℤ3,…, ℤ𝑛 sont appelés 

les espaces discrets. Inversement, les espaces ℝ,ℝ2, ℝ3, 

. . ., ℝ𝑛 sont des espaces continus. 

Une application quasi-affine est le correspondant 

de l’application affine dans les espaces discrets. C’est le 

discrétisé de l’application affine. Plusieurs propriétés des 

applications affines ne se conservent pas dans le cas 

discret. La caractérisation des applications affines par le 

barycentre n’est pas toujours vérifiée pour les 

applications quasi-affines. Toutes ces applications sont la 

forme discrète des applications continues (translation, 

homothétie et rotation). Cette discrétisation fait perdre 

aux applications quelques-unes de leurs propriétés.  

Dans ce papier, le concept d’application affine 

discrète est rappelé. Ensuite les propriétés des 

applications affines discrètes sont étudiées en vue de les 

comparer avec les propriétés des applications affines 

continues. 

 

PRÉLIMINAIRES SUR LES APPLICATIONS QUASI-

AFFINES 

Dans cet article, les concepts et notations 

suivants sont utilisés : 

- Si x est un réel, ⌊𝑥⌋ représente la partie 

entière de x qui est le plus grand entier 

inférieur et égal à x. 

- Si x et y sont deux entiers, ⌊
𝑥

𝑦
⌋représente 

respectivement le quotient de x par y. 

- Si 𝑥(𝑥1, 𝑥2) et 𝑦(𝑦1, 𝑦2) sont dans ℤ2, on 

définit respectivement les distances 4-

connexes et 8-connexes par :


=

−=
2

1

4 ),(
i

ii xyyxd  et 

ii
i

xyyxd −=
= 2,1

8 max),(  

[KLETTE  et ROSENFELD, 2004]. 

Application quasi-affine, application quasi-linéaire 

Définition 1. 

Une application quasi-affine ℱ(AQA) est une 

application discrète définie par ANDRES [ANDRES et 

http://www.congosciences.cd/


http://www.congosciences.cd 2 

ARTICLE  ARTICLE CONGOSCIENCES VOLUME 8 | NUMERO 1 | MARS 2020 

 

 

CONGOSCIENCES     VOLUME 8| NUMBER 1 | MARCH 2020 
© 2017 ACASTI and CEDESURK Online Journal. All rights 
reserved 

JACOB-DA COL, 2007 ; NEHLIG, 1995 ; JACOB-DA COL, 

2001] telle que :  

 

𝑓 ∶  ℤ2 ⟶ℤ2                             

(
𝑥

𝑦
) ⟼ {

𝑥′ = ⌊
𝑎𝑥 + 𝑏𝑦 + 𝑒

𝜔
⌋

𝑦′ = ⌊
𝑐𝑥 + 𝑑𝑦 + 𝑓

𝜔
⌋

 

avec 𝑥, 𝑦, 𝑥’, 𝑦’ entiers et 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, des entiers et 

avec  > 0. Elle est la partie entière d’une application 

affine rationnelle. 

Définition 2. 

Une application quasi-linéaire 𝐹(AQL) est une 

application linéaire discrète définie par :  

 

𝑓 ∶  ℤ2 ⟶ℤ2                             

(
𝑥

𝑦
) ⟼ {

𝑥′ = ⌊
𝑎𝑥 + 𝑏𝑦

𝜔
⌋

𝑦′ = ⌊
𝑐𝑥 + 𝑑𝑦

𝜔
⌋

 

avec 𝑥, 𝑦, 𝑥’, 𝑦’ entiers et 𝑎, 𝑏, 𝑐, 𝑑, des entiers et avec 

 > 0 [BLOT et COEUJOLLY, 2009 ; JACOB-DA CO et 

TELLIER, 2009]. Elle est la partie entière d’une application 

linéaire rationnelle. La matrice 𝒜 =
1

𝜔
(
𝑎 𝑏
𝑐 𝑑

) est 

appelée la matrice de l’application quasi-linéaire. 

Définition 3. 

Une application quasi-affine est bijective si et 

seulement si  𝜔 < 𝑑é𝑡(𝐴). 

Définition 4. 

Considérons une famille de points {𝐴𝑖 }1≤𝑖≤𝑛 de 

ℤ2(𝑜𝑢 ℤ3)  et les scalaires  {𝜆𝑖 }1≤𝑖≤𝑛 de ℤ tels que 


=


n

i

i

1

0 ,on appelle barycentre discret de la famille 

(𝐴𝑖 , 𝜆𝑖 )1≤𝑖≤𝑛 le point G unique tel que : 0


= i

n

i

iGA

. On montre que le point G est donné par  



















=




n

i

i

n

i

ii A

G





 

Exemple 1.  

Considérons deux points de ℤ2, A(1,2) et B(2,-2) 

affectés respectivement des scalaires 3 et 2. Le point 

𝐺 (⌊
3∙1+2∙4

3
⌋ , ⌊

3∙2+2∙(−2)

3
⌋) avec 

=

=
2

1

03
i

i  est le 

barycentre des points A et B. D’où 𝐺 (⌊
11

3
⌋ , ⌊

2

3
⌋) 

 

Proposition 1.  

 Une application quasi-affine 𝑓 ne conserve 

nécessairement pas le barycentre discret i.e  

∀ 𝐺 barycentre des points pondérés (𝐴𝑖 , 𝜆𝑖 )1≤𝑖≤𝑛, 𝐺’ =

𝑓(𝐺) n’est pas nécessairement le barycentre des points 

pondérés (𝑓(𝐴𝑖 ), 𝜆𝑖 )1≤𝑖≤𝑛. 

Preuve 1.  

En effet considérons f une application quasi-

affine et u son application quasi-linéaire associée. Soit 

(𝐴𝑖 , 𝜆𝑖 )1≤𝑖≤𝑛 une famille de points pondérés avec 


=

=
n

i

i

1

1 . Le barycentre G de points {𝐴}1≤𝑖≤𝑛 vérifie 

0


= i

n

i

iGA  et donc 0)(


= i

n

i

i GAu . En 

utilisant )( iGAu et si 𝜔 = 1, on en déduit que 

( ) =
n

i

i AfGf 0)()(


  ce qui montre que f conserve le 

barycentre des points (𝑓(𝐴𝑖 ), 𝜆𝑖 )1≤𝑖≤𝑛. 

En outre si 𝜔 ≠ 1, la relation )( iGAu  est vérifiée pour 

𝜔 = 𝑝𝑔𝑐𝑑(𝑎, 𝑏, 𝑐, 𝑑) car il se ramène au cas précédent et 

n’est pas vérifiée dans les autres cas du fait que 

l’application linéaire associée à l’application quasi-affine 

ne vérifie pas la linéarité. D’où l’application quasi-affine 

ne conserve pas toujours le barycentre. ■ 

Quelques applications quasi-affines usuelles 

Translations discrètes 

➢ Translation des points isolés 

Considérons 𝑇(⌊𝑢+𝛼⌋,⌊𝑣+𝛽⌋) paramétrée par un 

couple (𝛼, 𝛽)ℝ2. Un critère basé sur la distance entre 

𝑇(𝑢,𝑣)(𝑃) et  𝑇(⌊𝑢+𝛼⌋,⌊𝑣+𝛽⌋)(𝑃) doit permettre de choisir un 

couple (𝛼, 𝛽). Le point le plus proche de (𝑃𝑥+𝑢, 𝑃𝑦+𝑣) est 

le point 

 















++








++

2

1
,

2

1
vPuP yx [ANDRES et 

JACOB-DA COL, 2007]. 
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Une translation discrète adaptée peut donc 

s’écrire : 

𝑇 : ℤ2 ⟶ ℤ2                                      

       (𝑥, 𝑦) ⟼ (𝑥 + ⌊𝑢 +
1

2
⌋ , 𝑦 + ⌊𝑣 +

1

2
⌋)

 

 
Exemple 2. 

Soit le vecteur 𝑉 = (−5,6) ∈ ℤ2, pour tout 

couple (𝑥, 𝑦) ∈ ℤ2, On définit la translation discrète dans 

ℤ2 par  

𝑇(−5,6)(𝑥, 𝑦) = (𝑥 + ⌊−5 +
1

2
⌋ , 𝑦 + ⌊6 +

1

2
⌋) 

= (𝑥 + ⌊−
9

2
⌋ , 𝑦 + ⌊

13

2
⌋) 

= (𝑥 + ⌊−
9

2
⌋ , 𝑦 + ⌊

13

2
⌋) 

= (𝑥 − 5, 𝑦 + 6) 

La Figure 1 illustre la translation de vecteur (15,-4) des 

points de 𝐷 ⊂ ℤ2 

 

Figure 1. Translation des points isolés.  

➢ Translation discrète d’objets complexes 

Définition 5.  

On appelle une droite naïve, une droite discrète 

définie par  

𝐷(𝑎, 𝑏, 𝛾) = {(𝑥, 𝑦) ∈ ℤ2 𝛾⁄ ≤ 𝑎𝑥 + 𝑏𝑦

< 𝛾 +max(|𝑎|, |𝑏|)} 

avec 𝑎, 𝑏 ∈ ℤ   

La translation de point isolé diffère de la 

translation d’objets plus complexes. Examinons le cas 

d’une translation de droite discrète. Soit une droite 

euclidienne  

D : ax + by + c = 0, avec pour simplifier a, b, c entiers et  

(a, b) ∈ ℤ2 − {(0,0)}.  

Soit 𝛥 = {(𝑥, 𝑦) ∈ ℤ2 : 
−𝑏

2
≤ 𝑎𝑥 + 𝑏𝑦 + 𝑐 <

𝑏

2
} sa 

discrétisation naïve centrée. Cette droite discrète naïve 

est définie par 0 ≤ αx + βy + γ < max (|α|, |β|). 

 Dans ce cas max(|α|, |β|) = b et le fait de définir Δ par 

0 ≤ ax + by + c +
b

2
< b signifie que nous choisissons les 

points discrets les plus proches de la droite D. 

A titre d’exemple, la translation de la droite 

euclidienne D par le vecteur (𝑢, 𝑣) est la droite D’: 

𝐷′: 𝑇(𝑢,𝑣)(𝐷): 𝑎(𝑥 − 𝑢) + 𝑏(𝑦 − 𝑣) + 𝑐 = 𝑎𝑥 + 𝑏𝑦 +

𝑐 − 𝑎𝑢 − 𝑏𝑣 = 0 

La discrétisation naïve de cette droite est la droite 

discrète Δ’ telle que  

Δ′ = {(𝑥, 𝑦) ∈ ℤ2 : 
−𝑏

2
≤ 𝑎𝑥 + 𝑏𝑦 + 𝑐 − 𝑎𝑢 − 𝑏𝑣 <

𝑏

2
} 

Si les points sont déplacés isolement, on obtient la droite 

naïve : 

T
(⌊𝑢+

1
2
⌋,⌊𝑣+

1
2
⌋)
 (∆)

= {(𝑥, 𝑦) ∈ ℤ2 : 
−𝑏

2

≤ 𝑎𝑥 + 𝑏𝑦 + 𝑐 − 𝑎 ⌊𝑢 +
1

2
⌋ − 𝑏 ⌊𝑣 +

1

2
⌋

<
𝑏

2
} 

Isolement, chaque point de la droite a bien été déplacé 

d’un vecteur (⌊𝑢 +
1

2
⌋ , ⌊𝑣 +

1

2
⌋). On peut constater que la 

droite T
(⌊𝑢+

1

2
⌋,⌊𝑣+

1

2
⌋)
 (∆) est différente de la droite discrète 

∆′qui est la meilleure approximation du résultat euclidien 

visé. 

Considérons par exemple le droite D : x - 4y = 0, 

on opère une translation discrète de vecteur (
1

3
,
1

3
).  

On a : Δ′ = {(𝑥, 𝑦) ∈ ℤ2 : − 2 ≤ 𝑥 − 4𝑦 −
1

3
+
4

3
< 2} 

Δ′ = {(𝑥, 𝑦) ∈ ℤ2 : − 2 ≤ 𝑥 − 4𝑦 + 1 < 2} 

T
(⌊𝑢+

1
2
⌋,⌊𝑣+

1
2
⌋)
 (∆)

= {(𝑥, 𝑦) ∈ ℤ2 : − 2

≤ 𝑥 − 4𝑦 − ⌊
1

3
+
1

2
⌋ − 4 ⌊

1

3
+
1

2
⌋ < 2} 

= {(𝑥, 𝑦) ∈ ℤ2 : − 2 ≤ 𝑥 − 4𝑦 − ⌊
5

6
⌋ − 4 ⌊

5

6
⌋ < 2} 

http://www.congosciences.cd/


http://www.congosciences.cd 4 

ARTICLE  ARTICLE CONGOSCIENCES VOLUME 8 | NUMERO 1 | MARS 2020 

 

 

CONGOSCIENCES     VOLUME 8| NUMBER 1 | MARCH 2020 
© 2017 ACASTI and CEDESURK Online Journal. All rights 
reserved 

= {(𝑥, 𝑦) ∈ ℤ2 : − 2 ≤ 𝑥 − 4𝑦 − 0 − 4.0 < 2} 

   = {(𝑥, 𝑦) ∈ ℤ2 : − 2 ≤ 𝑥 − 4𝑦 < 2} 

Homothétie discrète [ANDRES et JACOB-DA COL, 2007] 

Soit une image initiale ℐ de taille J × K que nous 

désirons agrandir par la transformation géométrique 𝒜 

en une image finale ℱ de taille M × N avec MJ et NK. 

Un agrandissement, en tant qu’opération injective, ne se 

décrit pas très bien par une application quasi-affine mais 

dans ce cas, l’opération inverse en est une. La 

transformation inverse ℛ est une application quasi-affine 

contractante et se décrit par :  

  ℛ: ℱ ⟶ 𝐼                                      

(𝑥′, 𝑦′) ⟼ (𝑥, 𝑦) = (⌊
𝐽𝑥′
𝑀
⌋ , ⌊
𝐾𝑦′

𝑁
⌋) 

Cherchons à définir la transformation 

géométrique, on a 𝑥 = ⌊
𝐽𝑥′

𝑀
⌋ soit 0𝐽𝑥′−𝑀𝑥 𝑀. C’est 

simplement une droite naïve dans l’espace (𝑥, 𝑥’). Nous 

avons des expressions similaires pour y et y’. En posant 

 𝐶( 𝑥) = ⌊
𝑀𝑥−𝐽−1

𝐽
⌋ et 𝐿( 𝑦) = ⌊

𝑁𝑦−𝐾−1

𝐾
⌋, nous avons : 

𝒜: 𝐼 ⟶ 𝐹                                                                                
(𝑥, 𝑦) ⟼ [𝐶(𝑥), 𝐶(𝑥 + 1) − 1] × [𝐿(𝑦), 𝐿(𝑦 + 1) − 1]

   

 

La Figure 2 illustre l‘homothétie discrète de facteur 
15

4
×
13

3
 . 

 

Figure 2. Homothétie discrète de facteur 
15

4
×
13

3
  [ANDRES et JACOB-DA 

COL, 2007]. 

Rotations discrètes 

➢ Rotation pythagoricienne [THIBAULT, 2010] 

La rotation pythagoricienne est une rotation 

discrète bijective définie par 

𝑅𝑃(𝑘): ℤ2 ⟶ ℤ2                                

(𝑥, 𝑦) ⟼

{
 
 

 
 𝑥′ = ⌊

𝑏𝑥−𝑎𝑦+
𝑏

2

𝑏+1
⌋

𝑦′ = ⌊
𝑎𝑥+𝑏𝑦+

𝑏

2

𝑏+1
⌋

 avec a, b, k des entiers 

tels que a=2k+1 et b=2k(k+1). 

Exemple 3.  

L’application discrète  

𝑅𝑃(1): ℤ2 ⟶ℤ2                                

(𝑥, 𝑦) ⟼ {
𝑥′ = ⌊

4𝑥−3𝑦+2

5
⌋

𝑦′ = ⌊
3𝑥+4𝑦+2

5
⌋

définit une rotation 

pythagoricienne avec 𝑘 = 1, 𝑎 = 3 et 𝑏 = 4. 

 

La Figure 3 illustre cette rotation. 

 

Figure 3. Rotation Pythagoricienne où k=1. 

Nous remarquons immédiatement que                 

𝑎2 + 𝑏2 = (𝑏 + 1)2. Le non de rotation provient duriplet 

(a, b, b+1) qui est appelé triplet pythagoricien. L’ensemble 

 {(2𝑘 + 1, 2𝑘(𝑘 + 1), 2𝑘(𝑘 + 1) + 1): 𝑘 ∈ ℤ} décrit tous 

les triplets pythagoriciens de la forme (a,b,b+1). Cette 

rotation est intéressante pour différentes raisons :  

On peut démontrer qu’elle est bijective, c’est-à-

dire : RP(k)-1=RP(-k-1), la preuve est assez difficile à établir 

[THIBAULT, 2010] 

Elle permet à un réseau de points discrets d’avoir une 

rotation optimale égale à la rotation euclidienne. En effet, 

par construction, les points discrets de coordonnées 

𝑚(𝑎, 𝑏)𝑛(𝑏,−𝑎) et (𝑏 + 1)(𝑚, 𝑛) avec (𝑚, 𝑛) ∈ ℤ2 , ont 

la même image par la rotation pythagoricienne et la 

rotation euclidienne de même angle. Les points noirs au 

centre de pixels représentent les points qui ont une 

rotation optimale via la rotation pythagoricienne RP(1).  
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Une dernière propriété provient du fait que la 

rotation pythagoricienne n’est rien d’autre qu’une 

rotation discrète réelle tronquée. En supposant une 

répartition aléatoire des points discrets après rotation, le 

critère de distance doit par conséquent nous donner les 

valeurs proches de 
√2

2
  et  

  
1

2
∫ ∫ √𝑥2 + 𝑦2𝑑𝑥𝑑𝑦 = ∫ ∫ 𝜌2𝑑𝜌𝑑𝜃

1

𝑐𝑜𝑠𝜃
0

𝜋

4
0

1

0

1

0
   

=
1

12
(2√2 + ln (3 + 2√2)  

en distance maximale et moyenne. 

Nous pouvons remarquer ce qui suit : 

En général, 𝑅𝑃(𝑖) 𝑅𝑃(𝑗) n’est pas une rotation 

pythagoricienne, ni même une application quasi-affine. 

Cette rotation n’est définie que pour les angles 𝜃𝑘 =

𝑎𝑟𝑐𝑡𝑔(
2𝑘+1

2𝑘(𝑘+1)
). 

➢ Rotation quasi-transvection 

Construisons une rotation discrète bijective en se 

servant d’une décomposition de la rotation quasi-

transvection [ANDRES, 1996]. Le principe de cette 

rotation discrète a été introduit par REVEILLES [1991]. 

Une rotation euclidienne peut se décomposer en trois 

transvections euclidiennes : 

𝑅𝑜𝑡(, (𝑥0, 𝑦0)  =  𝑇𝐻 𝑇𝑉 𝑇𝐻 

(
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

) = (1
−𝛼′

𝛽′
0 1

) . (
1 0
𝛼

𝜔
1) . (

1
−𝛼′

𝛽′
0 1

) 

Où :  0 est une valeur arbitraire réelle, =sin, 

’=sin
𝜃

2
  et ’=cos

𝜃

2
 . 

La rotation quasi-transvection consiste à 

remplacer chaque transvection euclidienne par une 

application quasi-affine appelée quasi-transvection. 

 Considérons une transvection euclidienne horizontale 

définie de la manière suivante : 

𝑇𝐻: ℝ2 ⟶ℝ2                                    

(𝑥, 𝑦) ⟼ {
𝑥′ = 𝑥 + ⌊

𝑡𝑦+𝑣

𝑢
⌋

𝑦′ = 𝑦

avec 𝑡, 𝑢, 𝑣 des entiers, 

𝑢  0. 

La valeur 
𝑡

𝑢
 est appelée la pente de la quasi-

transvection et 𝑣 la constante de translation. La quasi-

transvection correspond simplement à un décalage dans 

les lignes ou les colonnes ; par conséquent une quasi-

transvection est toujours une application discrète 

bijective. 

 La rotation quasi-transvection de centre (x0, y0) 

et d’angle  est définie par : 

𝑅𝑄𝑇(𝜃, 𝑥0, 𝑦0): ℤ
2 ⟶ ℤ2 

                        (𝑥, 𝑦) ⟼ (𝑄𝑇𝐻′ ∘ 𝑄𝑇𝑉′ ∘ 𝑄𝑇𝐻′)(𝑥, 𝑦) 

Avec  

𝑄𝑇𝐻′ = 𝑄𝑇𝐻(−𝑎′, 𝑏′, ⌊
𝑏′ − 2𝑦0𝑎

′

2
⌋) 

𝑄𝑇𝑉′ = 𝑄𝑇𝑉(𝑎,𝜔, ⌊
𝜔 − 2𝑎𝑥0

2
⌋) 

Où : , x0, y0 sont des réels et a, a’, b’, des entiers 

vérifiant l’expression : 

𝜔 = 215 

𝑎 = ⌊𝜔. 𝑠𝑖𝑛𝜃⌋ 

𝑎′ = ⌊𝜔. 𝑠𝑖𝑛
𝜃

2
⌋ et 𝑏′ = ⌊𝜔. 𝑐𝑜𝑠

𝜃

2
⌋ 

 

CARACTÉRISATION DES APPLICATIONS AFFINES 

DANS L’ESPACE CONTINU 

Dans cette section, il nous semble nécessaire de 

commencer par une caractérisation des applications 

affines en vue d’une comparaison. Les applications 

discrètes retenues sont celles quasi-affines car elles se 

rapprochent des applications affines. 

Caractérisations des applications affines 

Les applications affines dans les espaces 

continues sont les plus connues. Ce paragraphe 

consistera à dresser un tableau caractérisant celles-ci. On 

se focalisera sur les applications affines conservant la 

distance, i.e les isométries, et celles ayant un point fixe. 

Les isométries affines de l’espace affine euclidien 

de dimension 1 sont les translations et les symétries 

centrales.  

Les isométries affines du plan affine euclidien 

sont les translations, les rotations, les réflexions et les 

symétries glissées. On peut dresser le Tableau 1 

suivant [MICHELE, 2006] : 
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Tableau 1-Classification des isométries de ℝ𝟐 

  

Translations Rotations Réflexions 
Symétries 
glissées 

Ensemble 
invariant 

pas de point 
invariant 

un unique 
point fixe 

une droite 
de points 
fixes 

pas de 
point fixe 

Droites 
invariantes 

une 
direction de 
droites 

Pas de 
droite 
invariante 

et une 
direction 
de droites 

une 
unique 
droite 
invariante  

Décomposition 
en réflexions 

2 droites 
parallèles 

2 droites 
sécantes 

1 droite 3 droites 

Les isométries affines de l’espace euclidien à trois 

dimensions sont les translations, les demi-tours, les demi-

tours glissés, les vissages, symétries centrales, les 

réflexions, les réflexions glissées et les anti-rotations 

(Tableau 2). 

Tableau 2. Classification des isométries de ℝ𝟑 

  

Translations Rotations Vissages 
Symétries 
centrales 

Ensemble 
invariant 

pas de point 
invariant 

Une 
droite de 
points 
fixes 

Pas de 
points 
fixes 

Un 
hyperplan 
de points 
fixes 

Droites 
invariantes 

une 
direction de 
droites 

Pas de 
droite 
invariante 

et une 
direction 
de 
droites 

une 
unique 
droite 
invariante  

Décomposition 
en réflexions 

2 droites 
parallèles 

2 droites 
sécantes 

1 droite 3 droites 

Etudes des applications discrètes 

Translation pour un point isolé 

Proposition 2.  

Toute translation discrète de point isolé conserve 

les distances discrètes 𝑑4 𝑒𝑡 𝑑8. 

Preuve : En effet, ∀ 𝐴(𝑎, 𝑏) , 𝐵(𝑎’, 𝑏’)  ∈ ℤ2 tels que 

𝑇(𝐴)et (𝐵) ∈ ℤ2, on a : 

𝑑4(𝑇(𝐴), 𝑇(𝐵)) = |𝑎
′ + ⌊𝑢 +

1

2
⌋ − 𝑎 − ⌊𝑢 +

1

2
⌋| + |𝑏′ +

⌊𝑣 +
1

2
⌋ − 𝑏 − ⌊𝑣 +

1

2
⌋|  

𝑑4(𝑇(𝐴), 𝑇(𝐵)) = |𝑎
′ − 𝑎| + |𝑏′ − 𝑏|  

𝑑4(𝑇(𝐴), 𝑇(𝐵)) = 𝑑4(𝐴, 𝐵)  

Et pour  

𝑑8(𝑇(𝐴), 𝑇(𝐵)) = max (|𝑎
′ + ⌊𝑢 +

1

2
⌋ − 𝑎 − ⌊𝑢 +

1

2
⌋| ; |𝑏′ + ⌊𝑣 +

1

2
⌋ − 𝑏 − ⌊𝑣 +

1

2
⌋|)  

𝑑8(𝑇(𝐴), 𝑇(𝐵)) = max(|𝑎
′ − 𝑎|; |𝑏′ − 𝑏|)  

𝑑8(𝑇(𝐴), 𝑇(𝐵)) = 𝑑8(𝐴, 𝐵)  

Donc la translation discrète conserve les distances. 

De la même manière, on montrera que les 

translations discrètes dans ℤ3conservent les distances de 

ℤ3. 

Proposition 3.  

Les translations discrètes des points isolés ne 

laissent aucun point fixe 

Preuve 2. 

En effet, 𝑝𝑜𝑢𝑟 𝑡𝑜𝑢𝑡 𝑣𝑒𝑐𝑡𝑒𝑢𝑟 (𝑢, 𝑣) ≠ (0,0). En 

considérant la translation 𝑇(𝑢,𝑣) définie ci-dessus, 

l’ensemble des points fixes V sera défini par  𝑉 =

{(𝑥, 𝑦) ∈ ℤ2: 𝑇(𝑢,𝑣)(𝑥, 𝑦) = (𝑥, 𝑦)}. 

Montrons que V est vide. 

En effet, selon la définition  

𝑉 = {(𝑥, 𝑦) ∈ ℤ2: 𝑇(𝑢,𝑣)(𝑥, 𝑦) = (𝑥, 𝑦)} 

𝑉 = {(𝑥, 𝑦) ∈ ℤ2: (𝑥 + ⌊𝑢 +
1

2
⌋ , 𝑦 + ⌊𝑣 +

1

2
⌋) = (𝑥, 𝑦)}  

𝑉 = {(𝑥, 𝑦) ∈ ℤ2: 𝑥 + ⌊𝑢 +
1

2
⌋ = 𝑥  𝑒𝑡 𝑦 + ⌊𝑣 +

1

2
⌋ = 𝑦}  

𝑉 = {(𝑥, 𝑦) ∈ ℤ2: ⌊𝑢 +
1

2
⌋ = 0 𝑒𝑡 𝑦 + ⌊𝑣 +

1

2
⌋ = 0}  

𝑉 = ∅  

Remarque : Les autres points de l’objet restent fixes. Tout 

point qui n’est considéré comme isolé n’est pas modifié 

c’est-à-dire un point A tel que T(A,X) 0. 

Proposition 4.  

Les angles sont conservés dans la translation 

discrète des points isolés. 

Translation discrète d’objets complexes 

La translation de point isolé est une chose 

différente de la translation d’objets plus complexes. Ici 

nous nous reposons sur une meilleure approximation de 

la translation affine euclidienne. Contrairement aux 

translations affines, les translations discrètes offrent une 

multiplicité des solutions. Ainsi, il faut opérer un meilleur 

choix pour n’est pas s’écarter de la réalité. Dans l’exemple 

traité ci-haut, on constate que la translation discrète de la 
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droite ne correspond pas à la translation euclidienne de 

la même droite discrétisée. 

Homothétie discrète 

Dans la définition de l’homothétie discrète, nous 

remarquons qu’aucun point n’est fixe. Tout point de 

l’image subit une augmentation de la taille.  

Rotations discrètes 

➢ Rotation pythagoricienne 

La rotation pythagoricienne est une rotation 

discrète bijective. Elle produit une rotation optimale 

égale à la rotation euclidienne. Tous les points subissent 

des rotations mais ceux d’une rotation optimale sont mis 

en exergues.  

 

Figure 4. Tableau comparatif des applications affines et des applications 

quasi-affines 

➢ Rotation quasi-transvection 

C’est une rotation discrète bijective construite en 

se servant d’une décomposition de la rotation quasi-

transvection [ANDRES et JACOB-DA COL, 2007]. Le 

principe de cette rotation discrète a été introduit par 

REVEILLES [1991].  

Une rotation euclidienne se décompose en trois 

transvections euclidiennes.  

Nous résumons cette étude de conversation des 

propriétés par la proposition 2 et le Figure 4. 

Proposition 5.  

Soit f une application quasi-affine discrète définie 

dans ℤ2 

Si f est une translation discrète alors f conserve le 

barycentre, les distances, l’orientation des angles. 

Si f est une rotation discrète alors f ne conserve pas 

toujours les distances et les angles. 

Si f est une homothétie discrète alors f ne possède aucun 

point fixe. 

Les résultats précédents sont résumés dans le 

Figure4. 

CONCLUSION 

Les différentes définitions des applications 

affines dans les espaces discrets ont permis d’établir la 

comparaison sur la conservation de barycentre, 

conservation de l’alignement des droites, conservation de 

distances, la préservation de l’orientation des angles et 

sur la possession de point fixe.  

Les transformations affines conservent plusieurs 

propriétés alors que celles discrètes n’en conservent pas 

toutes. Cet article, axé sur une étude comparative de ces 

applications dans les espaces continues et discrets, a 

conduit aux résultats suivants : 

- Les translations discrètes conservent les 

distances, les barycentres, les angles et tous 

les points sont invariants. Ici, il y a lieu de 

différencier celles des points isolés et des 

objets complexes. 

- Les rotations discrètes ne préservent pas 

toujours les angles et ne présentent pas la 

structure de groupe car la composée de deux 

rotations n’est pas une rotation. Il y a lieu de 

préciser que ceci n’est pas valable pour la 

rotation quasi-transvection. Celle-ci tend à se 

rapprocher de la rotation continue. Et enfin, 

l’homothétie discrète ne possède pas. 
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RÉSUMÉ 

Une application quasi-affine, étant la partie 

entière d’une application affine rationnelle, est la forme 

discrétisée d’une application affine. Cet article est 

consacré à l’étude de conservation des principales 

propriétés des applications affines (conservation des 

barycentres, conservation de distance, existence d’un 

point fixe) par les applications quasi-affines. Les 

applications quasi-affines étudiées sont les translations 

discrètes, les homothéties discrètes ainsi que les 

rotations discrètes.  

Mots Clés 
Géométrie discrète, application quasi-affine, application quasi-linéaire. 
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