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Note on canonical screen distribution of lightlike hypersurface of ]R’,}”Z.

In this paper, we present the construction of canonical screen distribution for lightlike

hypersurface (lightlike cone) of semi-euclidean space according to Bejancu and Duggal approach.

We prove that the canonical screen distribution for the lightlike cone of semi-euclidean space
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IR,TI'”Z is integrable (Theorem 4.1), totally conformal (Theorem 4.3) and totally umbilical

(Theorem 4.4). So we deduce some induced geometrical objects and properties of this lightlike
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INTRODUCTION

Il est naturel de trouver une sous-variété de type lumiere
dans une variété semi-Riemannienne a cause de sa métrique
indéfinie. L'étude de ces sous-espaces est aussi intéressante,
du point de vue physique, les hypersurfaces nulles
représentent les modeles de plusieurs types d’horizons étudiés
en relativité générale. A cause de la métrique induite
dégénérée sur ces sous-espaces, il n’est pas possible d’étudier
ces sous-espaces comme dans la théorie habituelle de la

géométrie non-dégénérée.

La théorie générale des sous-variétés de type lumiere a
été développée par KUPELI [1987] et par BEJANCU et DUGGAL
[1996] dont le travail a été présenté sous forme d’ouvrage. La
principale différence entre les sous-variétés de type lumiere et
les sous-variétés non dégénérées est que dans le premier cas,
le fibré vectoriel normal TM*intercepte le fibré tangent TM.
Pour cette raison, dans la technique développée dans BEJANCU
et DUGGAL [1996], les auteurs ont introduit, pour les

hypersurfaces nulles, une distribution écran non dégénérée
S(TM) et ont construit un vibré vectoriel transverse nul
correspondant qui vient jouer le réle de la normale comme
dans le cas non dégénéré. Cette technique permet alors de
définir les objets géométriques induits (la connexion, les
secondes formes fondamentales, les opérateurs formes, etc.)
nécessaires pour la géométrie des sous-variétés. Il est a noter
malheureusement que ces objets induits dépendent du choix
de la distribution écran qui en général n’est pas unique. Ceci
suscite des questionnements sur la construction d’une

distribution écran canonique en géométrie dégénérée.

Actuellement dans la littérature, il y a pas mal des travaux
sur la question sous examen. On peut citer BEJANCU [1993],
BEJANCU et al. [1998], AKIVIS et GOLDBERG [2000],
ATINDOGBE et DUGGAL [2004], DUGGAL [2007] qui ont
concouru dans ce sens, mais cela, pour des classes

d’hypersurfaces bien définies.

La présente étude est basée sur la construction de I'écran
canonique présentée dans BEJANCU et DUGGAL [1996]. Le but
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de ce travail est d’étudier la géométrie du cne de lumiére AZ‘_+11
doté d’'un écran canonique et d’établir globalement et
localement les propriétés et les objets géométriques induits sur
cet espace de type lumiere Le travail est organisé comme suit :
La section deux présente la construction de la distribution écran
et du fibré transverse nul ainsi que quelques relations de base sur
les hypersurfaces de type Ilumiere d’'une variété semi-
DUGGAL

La section trois présente la construction de I’écran

Riemannienne suivant I'approche de BEJANCU et
[1996].
canonique sur une hypersurface de type lumiére de I'espace
semi-euclidien IR{ZI"” en général et sur le cone de lumiére AZ‘_"ll
de I'espace ]Rfl’”z en particulier. La section quatre établit
quelques résultats sur la géométrie du cone de lumiere, entre
autres l'intégrabilité de I'écran canonique (Théoreme 4.1),
suivant une approche autre que celle de la preuve donnée dans
le Théoréme 6.1 de BEJANCU et DUGGAL [1996]. La conformité
de l'écran canonique de A’,}”_J’f , pour l'indice q en général
(Théoreme 4.3), résultat qui généralise celui de ATINDOGBE et
DUGGAL [2004].

L’ombilicité totale de I'écran canonique et de celle du céne
A’,}‘ff a aussi été étudié (Théoreme 4.4). Il a ainsi été déduit
quelques propriétés géométriques issues de ces résultats. Dans
La section cing établit les calculs des objets géométriques induits

sur le cone de lumiéreAT!.

HYPERSURFACES DE TYPE LUMIERE

Soit M une hypersurface d’une variété semi-Riemannienne

(M, 3) de dimension m + 2 avecm > 0 d’indice ¢ € {1,---,m +
1}. Comme pour tout u € M, I'espace vectoriel T,M est un
hyperplan de I'espace semi-euclidien (T, M, g,,), on considére les
sous-espaces orthogonal et radical de T,,M définis par :

T,M* = {V, € T,M; g, (V,,W,)) = 0,YW, € T,M},

et

RadTyM = {§, € T,M; gu($y ,V,) = 0,V € T,M}

=T,MNT,M*.

On dit que M est une hypersurface de type lumiere (nulle,
dégénérée) de M (ou équivalemment 'immersion de M dans M
est de type lumiére) si RadT,M # {0}, pour tout u € M.

Proposition 2.1 ([BEJANCU et DUGGAL, 1996]). Soit (M, g) une
hypersurface de (M, §) de dimension m + 2. Alors les assertions

suivantes sont équivalentes :
(i) M est une hypersurface de type lumiere;
(i) g est de rang constant m sur M ;
(iii) TM* = Uyey TuM*.

Preuve :(i) =(ii) : Puisque RadT,M =+ {0}, il existe un vecteur non
zéro &, € RadT,M,tel que g(&,,X,) =0 quel que soit X, €
T M. Ainsi, rang(g,) < m + 1. Mais aussi, rang(g,) > m

puisque dimT,M* = 1. Par conséquent rang(g,) = m, pour
toutu € M.

(i) = (iii) : Comme rang(g,) = m, il existe un vecteur non
zéro &, € T,M , tel que g(&,,X,) = 0, pour tout X,, € T,M. Il en
résulte que &, € T,M* . Ainsi, tout vecteur Y, € T,M*‘peut
s’écrire comme Y, = aé,,a € R, ceci prouve que T,M* c
T, M et TM* = Uyepm TuM*définit une distribution sur M.

(iii) = (i) : TMtétant un sous-fibré vectoriel de TM, on
a RadTM = TM* # 0.

Ainsi I’hypersurface M est dégénérée. m

De ce résultat, RadTM = TM* définit une distribution sur
M de rang 1. La métrique semi-Riemannienne g sur M induit sur
M un champ de tenseurs symétriques g de rang m et de type
(0,2). Dans ce cas, M est une sous-variété dégénérée de M de
codimension 1. Ces hypersurfaces ont un intérét particulier en
relativité générale, elles implémentent les modeéles de certains

types d’horizons.

De ce qui précéde, il n"est pas possible de décomposer le
long de M, le fibré vectoriel tangent TM de I'espace ambiant M
en somme directe interne des composantes tangentielle et
normale comme dans le cas classique des hypersurfaces non

dégénérées, ceci du fait que TM+ c TM.

Pour résoudre cette difficulté, BEJANCU et DUGGAL [1996]
ont introduit une technique qui consiste a construire un fibré
vectoriel supplémentaire non orthogonal a TMdans TM, qui

jouera le role de TM*comme dans le cas classique.

Par cette approche, on considere un fibré vectoriel
supplémentaire S(TM) de RadTM = TM*dans TM. On obtient

la décomposition suivante :

TM = S(TM) @oren, TM* 1)

Comme chaque S(T,M) est le sous-espace vectoriel écran
de T,M, d’aprés BEJANCU et DUGGAL [1996], on appelle S(TM)
une distribution écran sur M et elle est non dégénérée. En effet,
en supposant un vecteur X;, € S(T,M) tel que g(X,,Y,) = 0,
pour tout ¥, € S(Ty M), puisque en plus g(Xy,&,) = 0, pour
tout &, € T,M*, on en déduit que X,, € RadT,M = T,M". Ceci
contredirait la relation (2.1). Il est a remarquer que la distribution
écran S(TM) définie est de rang m et elle n’est pas unique en

général.

Définition 2.2 Une hypersurface de type lumiere (M; g) d’une
variété semi-Riemannienne (M; g), munie d’une distribution

écran S(TM) est dite normalisée par structure écran et on note
M; g; S(TM)).

Désignons par S(TM)*', le fibré vectoriel supplémentaire
orthogonal & S(TM) dans TM. On a le long de M Ia
décomposition suivante :

Ty = S(TM) ®orenS(TM)* (2.2)
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Suivant cette décomposition, on constate que S(TM)* est
aussi un fibré vectoriel non dégénéré de rang 2 contenant TM*+ =

RadTM comme sous-fibré vectoriel.
Théoréeme 2.3 ([BEJANCU et DUGGAL, 1996]).

Soit (M; g; S(TM)) une hypersurface de type lumiere
normalisée d’une variété semi-Riemannienne (M; g). Alors il
existe un fibré vectoriel unique tr(TM) de rang 1 le long de M,
tel que pour toute section non zéro & € I'(RadTM) sur le
voisinage de coordonnées U < M, il existe une section unique
N € I(tr(TM))sur U vérifiant: VX € T (S(TM)y),

GIN,&) =1et GIN,N) = G(N,X) =0 23

Preuve : Considérons un fibré vectoriel supplémentaire F de
TM* dans S(TM)* et prenons une section V € (Fy ),V # 0.
Alors g(&,V) # 0 sur U, au cas contraire le fibré vectoriel
S(TM)* serait dégénéré. Définissons sur U, le champ de vecteurs
N par:

_awwv)
2G(EV) f}' 4

__1 {

giév)
Par un calcul direct, on peut montrer que les relations (2.3)
sont vérifiées si et seulement si Nprend la forme définie par la

relation (2.4).

Considérons un autre voisinage de coordonnées U * ¢ M
quiesttel que U NU* # 0. Les fibrés vectoriels TM* et F étant
derang 1,onaqueé* =af etV* =SV, ol a et § sont deux
fonctions différentiables définies sur U N‘U *. En remplacant
&*et V™ dans (2.4), on trouve que N* et N sontreliéssurU NU*
par la relation N* = iN. Ceci montre que F induit sur M un fibré
vectoriel noté par tr(TM) tel que localement, les relations (2.3)

soient satisfaites.

Finalement, en considérant un autre fibré vectoriel E
supplémentaire 8 TM+ dans S(TM)*, en utilisant la relation (2.4)
pour tous les fibrés F et E, on obtient le méme fibré tr(TM). m

La relation (2.4) montre que le fibré vectoriel tr(TM) est
isotrope etona tr(T,M) n T,M = {0}, pourtoutu € M. Ainsi
en considérant (2.2), on obtient les décompositions suivantes:

TMjy = S(TM) @pren(TM*® tr(TM)) 2.5)

et
TMyy = TM & tr(TM) (2.6)

Il résulte de la construction (2.6) que pour un choix

quelconque de la distribution écran

S(TM), il existe un fibré vectoriel isotrope unique tr(TM),
supplémentaire a TM dans TMW qui satisfait les relations (2.3).
Le fibré tr(TM) est appelé fibré vectoriel transverse nul de M
relative a S(TM).

Il est a remarquer que {T,M* @ tr(T,M)} = Vect{&,, N,}
est un plan hyperbolique, pour tout u € M, cela car la restriction

de la métrique g sur ce plan admet comme signature {—, +}. Il en

résulte qu’en utilisant la décomposition (2.5), la distribution
écran S(TM) est non dégénérée et admet comme indice g-1. En
particulier, la distribution écran d’une hypersurface de type
lumiere d’une variété de Lorentz est riemannienne, c’est a dire la

restriction de la métrique sur S(TM) est définie positive.

En utilisant la terminologie employée dans SCHOUTEN
[1928], le fibré vectoriel tr(T M) est considéré comme la normale
a I'hypersurface dégénérée M dans la variété semi-riemannienne
M. Il est possible dans les calculs de construire premiérement ce
fibré transverse nul et ensuite obtenir sa distribution écran
correspondante S(TM). Ceci est la démarche a adopter ici pour

la construction de la distribution écran canonique.

Considérons (M, g,S(TM)) une hypersurface de type
lumiere de la variété semi-Riemanniénne (M; §) et 7 la
connexion de Levi-Civita sur M. En utilisant la décomposition (2.6)
on a les formules de Gauss et Weingarten suivantes :

VxY = VyY + h(X,Y) et
ViV = —AyX + VLV 2.7)

pour tous X,Y € '(TM)et V € I'(tr(TM)), ou VyY et
Ay X appartiennent a I'(TM), h(X; Y ) et ViV appartiennent &
I'(tr(TM)). Il est évident de voir que V est une connexion sans
torsion, h est une F(M)-forme bilinéaire symétrique sur I'(TM),
évaluée dans tr(TM), Ay est un F(M)-opérateur linéaire sur
I'(TM) et V¢ est une connexion linéaire sur tr(TM). h et A}, sont
respectivement appelés la seconde forme fondamentale et

'opérateur forme de I’hypersurface M.

Considérant localement {&, N} une paire des sections de
normalisation définies sur U € M dans le théoréme 2.3. On
définit alors sur U € M, une forme bilinéaire symétrique B et
une 1-forme 7 par B(X,Y) = g(h(X,Y),&) et 7(X) =
g(gN,$),

pour tous X, Y € ['(TM). Ainsi de (2.7) on obtient les
formules locales de Gauss et Weingarten suivantes :

VxY = VyY + B(X,Y)N et
VxyN = —AyX + T(X)N 2.8)

pourtous X,Y € I'(TM).

Notons par P le morphisme projection de TM sur S(TM)
relativement a la décomposition orthogonale (2.1). On obtient les
équations de Gauss et Weingarten pour la distribution écran
S(TM) suivantes: VxPY = V;PY + h*(X,PY) et

VyU = —AyX + V3'U (2.9)

pourtous X,Y € I'(TM), U € I'(TM*). On note que V;PY
et A;; X appartiennent a I'(S(TM))

pendant que h*(X, PY) et V;tU appartiennent a I'(TM1). Il
suit que 7* et V*' sont des connexions linéaires définies
respectivement sur S(TM) et TM*. h* est une F(M)-forme
bilinéaire sur I'(TM) X I'(S(TM)) et A} est une F(M)-
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opérateur linéaire sur I'(TM). h*et Aj sont respectivement
appelés la seconde forme fondamentale et I'opérateur forme de
la distribution écran S(TM).

Définissons localement sur U :

C(X,PY) = g(VxPY,N)ete(X) = g(V3'&,N)
pour tous X, Y € I'(TM). On remarque que
h*(X,PY) = C(X, PY )¢ et e(X) = —1(X).

Ainsi les équations de Gauss et Weingarten locales pour la

distribution écran S(TM) sont définies par :

VxPY = ViPY + C(X, PY)¢ et

Vxé = —A;X — T(X)¢ (2.10)

Par un calcul direct, en utilisant (2.8) et (2.10) et puisque
g(7x&,&) =0, On obtient :

B(X,PY) = g(A;X,PY)etB(X,§) =0 (211)
C(X,PY) = g(AyX; PY) et
gAyX,N) =0 (2.12)

pour tous X, Y € TI'(TM). Il est important de mentionner
que la seconde forme fondamentale locale B est indépendant du
choix de la distribution d’aprés BEJANCU et DUGGAL [1996].

CONSTRUCTION DE L'ECRAN CANONIQU

Soit ]Rg“r2 un espace semi-euclidien muni de la métrique g
définie par :
gluy) = —Z{g xiy' + g x%y¢ (D)

Considérons une hypersurface M de ]R{g”z définie

localement par les équations : x4 = fA4(°, ...,u™);

rang [%] =m+1 (32)

Avec A€{0,..,m+ 1}, a €{0,..,m} et les f4 sont des

fonctions différentiables (lisses) sur un voisinage des

coordonnées U < M. Ainsi notons par :

DA =
a_f() afA—lafA+1 afm+1
oul ou® ou’ ou’
: P ; (3.3)
afO afA—lafA+1 afm+1
du™m ou™ Jgu™m du™

Notons que dans cette section, sauf mention contraire, les

notations d’indices suivantes seront utilisées :

AB,C..€{0,...,m+1}; a,B,y..€{0,...,m}; a,b,c... €
{q,....m+1};i,j,k..€{0,...,q — 1}.

Le champ de bases naturelles sur le voisinage des
coordonnéesU c M, engendrant le fibré tangent TM est donné
par:

A
0 _9° 9 4e{0,..,m} (3.4)

u® ~ ou® axA’

Par un calcul direct, on peut montrer que le fibré normal
TM*t = RadTM le long du voisinage des coordonnées U c M

est engendré par le champ de vecteurs :

m+1

q-1
9 LD
g’:;(—nn 7+ ;(—1) D= (35)

Par conséquent, M est une hypersurface de type lumiére si

et seulement si g(&,&) = 0, ce qui est équivalent a la condition :
-1 N2
Y (DY)" = X (D9)? (3.6)
Comme vue dans la section précédente, la distribution écran
joue un role important dans I'étude de la géométrie différentielle
des hypersurfaces de type lumiére. On montre dans la suite la
construction de cette distribution écran en utilisant les fonctions

définies dans des équations locales d’une hypersurface de type

lumiére immergée dans un espace semi-euclidien.

Observons premierement qu’une section locale de TIR{;"”
définiesur U € M par:
q-1

9
V=;(—1)D =G

est nulle part tangente a I'hypersurface M. En effet,
_ —1/ )2
gw.o = 3 (0H (3.8)

Et s'il existe un point u € U tel que g(V},&,) = 0, alors en
utilisant les relations (3.6) et (3.8), on voit clairement que tous les
déterminants définis en (3.3) sont identiquement nuls. Ceci est
une contradiction du fait que rang [gLuz =m + 1 en tout point
u € U. Ensuite, la section donnée par la relation (3.7) sur chaque
voisinage de coordonnées U engendre un fibré vectoriel L au-

dessus de Mderang = 1.

Considérons le fibré vectoriel défini par H = TM1 @ L au
dessus de M, qui est non-dégénéré relativement a la métrique
euclidienne g. En effet, supposons qu’il existe un pointu € U et
un seul vecteur non-zéro X, € H,, tel que g, (X,,&,) =0 et
GuXy, V) =0

Alors de la premiere égalité, on déduit que X,, € T, M. Mais
T,M nH, = T,M*, et par conséquent le vecteur X, est
colinéaire au vecteur &,. Ainsi g, (X, V;,) # 0, ceci contredit la

seconde égalité.

Finalement, prenons le fibré vectoriel S(TM),
complémentaire et orthogonal a H dans T]RZ,"+2 au-dessus de M.
Comme S(TM) est orthogonal a TM+, S(TM) N TM+ = {0}, et
il est de rang = m. Il suit que S(TM) définit une distribution

surMetTM = S(TM) @y en,TM*.

Par conséquent S(TM) est une distribution sur M appelée

distribution écran canonique surM.

Ensuite, en utilisant les relations (2.4), (3.7) et (3.8), on

obtient :
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= (35 0)) " (v+39) 39

Le fibré vectoriel engendré localement par N ci-dessus est
appelé fibré vectoriel transverse canonique nul. Il est clair que le
choix de la paire des sections {&, N} définies en (3.5) et (3.9) ou
équivalemment le triplet (M,g,S(TM)) ou S(TM) est la
distribution écran canonique ci-dessus, définit ce qu’on appelle la

normalisation canonique de I'hypersurface M.
Exemple 3.1 (Cone de lumiére A7*! )

Soit un espace semi-euclidien ]RZ”Z , C'est a dire I'espace

R™*2 muni de la métrique semi-euclidienne définie par :

glxy) = -2, xlyl + Yl xaye (3.10)
Alors, le cone de lumiere A7Y! de RJ'™*? est donné par
I’équation
1, N2
Y (x) =Tl (x )2 = 0; pour x#0  (311)
En considérant I'immersion locale définie par :
x0 =ul,..,x™m=um
1
-1 N2 2
2= £ [0 (x)” - B e (3.12)
par un calcul direct, on montre que Aznfll est une

hypersurface de type lumiére (ou dégénérée) de I'espace RZ‘”
et la distribution radicale RadTAm‘“l1 est engendrée par un

champ de vecteur global sur Aerl donné par:

f Zm+1 A 6 (313)

L'unique section vérifiant les relations (2.3) et engendrant le
fibré vectoriel transverse canonique nul tr(T m+1) est définie

globalement sur A7 par :

V=23 e)) T (- 2

a
it Z”qlx 6x‘1)
(3.14)

Ainsi la distribution écran canonique correspondante

S(T Am“) est engendrée par des champs de vecteurs de type

vérifiant les relations :

Y il =0; XMl xaxe = 0 (315)

en tout point de Aerl En considérant un voisinage des
coordonnées U © AG{ tel que x™** > 0 etx?~" # 0, alors par
un calcul direct en utilisant la relation (3.14), la distribution écran
canonique est engendrée localement par la famille des champs

de vecteurs {XO, v Xg-2, Y, Ym} définis par :

@
a P9
L= d1 2 ]
XJ X o X Gy et
a a
— ,m+1 b
Yy =x™ g =X (3.16)

pourtoutj € {0,..,q —1}et b€ {q,..,m}. m

GEOMETRIE DE L'HYPERSURFACE A
Ecran canonique

Dans cette section seront étudiés quelques résultats
importants de la géométrie extrinséque des hypersurfaces de
type lumiere dotées d’'une distribution écran canonique. On
considere en général une hypersurface (M, g,S(TM)) d’'une

variété semi-Riemannienne (M; ).

Une hypersurface de type lumiére (M, g,S(TM)) d’une

variété semi-Riemannienne (M; §) est dite totalement
ombilique si localement sur un voisinage de coordonnées ¢ M ,

il existe une fonction différentiable p telle que VX,Y € F(TMW),
B(X,Y) = pg(X,Y) €29

La distribution écran S(TM) est dite totalement ombilique
si sur tout voisinage de coordonnées U c M, il existe une
fonction différentiable A telle que VX,Y € F(TMru),

CX,PY) = 2g(X,Y) (4.2)

Danslecasou A = 0 (A # 0) sur U, on dit que la distribution
écran S(TM) est totalement géodésique (ou proprement

totalement ombilique).

La distribution écran S(TM) est dite intégrable si sur toutes
sections X,Y € I'(S(TM)), alors [X,Y ] € I'(S(TM)).

(M, g,S(TM)) est dite hypersurface a écran localement
conforme dans ATINDOGBE et DUGGAL [2004] si les opérateurs
forme Ay et A’é de M et de la distribution écran S(TM) sont reliés
par la relation

Ay = @A} (4.3)

ol ¢ est une fonction différentiable non-nulle sur le

voisinage de coordonnées U < M. En

particulier I'hypersurface est dite a écran globalement

conformesi U = M.

Soient 7 etV , la connexion de Levi-Civita de M et la
connexion induite sur M. On note par R etR les tenseurs de
courbure de Riemann de V et V, respectivement. L’équation de
Gauss de [I'hypersurface de type
certainement du choix de I'écran S(TM) est définie par BEJANCU
et DUGGAL [1996] : Pour tous X, Y, Z € I'(TMyy,)
R(X,Y)Z = R(X,Y)Z + B(X,Z)AyY
—B(Y,Z)AyX + (VxB)(Y,Z)N
+B(Y,Z)t(X)N — (VyB)(X,Z)N

—B(X,Z2)t(Y)N (4.4)

lumiére, dépendant

Notons par R(®2) |e tenseur induit de type (0,2) sur M,
donnépar:VX,Y,Z € F(TMW),
RO = trace {Z - R(Z,X)Y } (4.5)
Puisque la connexion induite V sur M n’est pas métrique, en

général le tenseur R©2 n’est pas symétrique. En considérant

dans un voisinage de coordonnées € M , un champ des bases
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locales {&,W,} sur M et son correspondant {&,W,, N} sur M
relativement aux décompositions (2.1) et (2.5), ce tenseur est
défini par: VX,Y € T(TMy),

ROD(X,Y) = G(R(E, X)Y,N)

+ X0p=1€ang (R(Wy, X)Y, W) (4.6)

ou €4, = g(W,, Wy). Par un calcul direct, en utilisant la

relation (4.4) dans (4.6) suivant la technique développée dans

ATINDOGBE et al. [2013], on obtient la relation : VX,Y €
T(TMpy),

ROD (X Y) = Ric(X,Y) + B(X,Y)trAy

—g(AnX, A;Y) = GR(E, V)X, N) (4.7)

ol Ric est le tenseur de Ricci de M. Notons que R(©2)
devient le tenseur de Ricci induit sur Ms’il est symétrique. Dans

ce cas, on le note Ric.

Théoreme 4.1 La distribution écran canonique S(T Aznfll) du
céne de lumiere A’;_J'f d’un espace semi-euclidienne RZ”Z est

intégrable.

Preuve : Considérons I'écran canonique S(TM) de M défini dans
la section 3. Soient X,Y € I'(S(TM)). En tenant compte que ¥
est une connexion plate de Levi-Civita (métrique et

sans torsion) sur I'espace semi-euclidien IRZ”Z, en utilisant
les relations (2.8), (3.13) et (3.14), puisque la seconde forme

fondamentale B est symétrique et le tenseur de torsion

T(X, Y) = ﬁxy - ﬁYX - [X! Y],

ona
g(X,Y],N) =
q-1 -1 q-1
S glor-vx -2 xl
X Ya, . ax"
i=0 i=0
q-1 1g-1
= 0)? 15 (7, x 7 (77,2
= (x) I\WXam) — 9\ 5a
i=0 i=0
a-1 1g-1
2 o _ _
] (Z(xl) xl{g (X' "3 ) _9(y' Vx 0x‘)}
i=0 i=0
=0.

Par conséquent [X,Y ] € S(T A’;ff) et ainsi la distribution
écran S(T A*!) est intégrable. m

Le résultat donné dans le théoreme 4.1 définit I'intégrabilité
de la distribution écran canonique du cone de lumiere d’un
espace semi-euclidien, quel que soit I'indice q. En utilisant les

relations (2.8), (2.10) et (2.12), ona pour tous X, Y € S(T A'q”_+11) :
CX,Y)—=C(Y,X) = g(VyY — 7y X,N)
=g(X,Y],N)

=0.

Il en résulte que la seconde forme fondamentale h* (ou C)
de S(T A1) est symétrique sur S(T A1) et 'opérateur forme

Ap du cone est symétrique relativement la métrique induite g
sur AL

En utilisant le résultat de BEJANCU et DUGGAL [1996], il suit

que les courbes intégrales de ¢ sur le Cone Aﬁq”fll

sont des
géodésiques nulles de I'espace ]Rig”z et par conséquent ce sont
des portions de droites. Les deux distributions S(T A’,;lfll) et
RadTA’]f_"l1 sont toutes intégrables sur le cone Aﬁq”fll. Ainsi on a

le résultat suivant :

Corollaire 4.2 Le cone de lumiere A’,;lfll d’un espace semi-

euclidien IRZ”Z est localement le produit d X M, ou d est une

ligne droite et M est une sous-variété semi-Riemannienne de
m+2 47; :

R d’indice g — 1.

Le résultat suivant généralise le résultat de ATINDOGBE et

DUGGAL [2004], en considérant I'indice quelconque q.

Théoréme 4.3 Le cOne de lumiere AZL_+11 d’un espace semi-
euclidien ]Rg“'z est une hypersurface a écran globalement

conforme.

Preuve : Considérons I'écran canonique S(T AZ‘_T) du cbne de
lumiére AT défini dans I'exemple 3.1. Soient X, Y € I'(TAT1).
En tenant compte de la connexion plate de Levi-Civita sur |'espace
semi-euclidien ]R%Z,”*Z, en utilisant les relations (2.8), (3.13) et

(3.14) On a ce qui suit :
CX,Y) = g(VxPY,N)

= g(7xPY,N)
a-1 -1 a-1
_1 2 | & ;9
=3 Z(x) g| 7xPY, _ZZXW
i=0 =0
a-1 -1 a-1
_1 2 i~(o 9
=3 Z(x) B(X,PY) —ZZx g( XPY,ﬁ)
i=0 i=0
a-1 -1 a-1
_1 2 i~ = 0
=3 Z(x) B(X,PY) +zzx g(PY,VXW)
i=0 i=0
(S -
= (x)*| B, PY)
=0

Il en résulte, en utilisant les relations (2.11) et (2.12), que :
vX € I(TATHY),

AyX = ;(zfgg(xi)z)_l AX (4.8)

Ainsi I'hypersurface est a écran globalement conforme, ou la

fonction différentiable non-nulle sur M est définie par :

p(x) = %(Z?;J(xi)z)_l n 4.9

Théoréeme 4.4 Soit A’;_"ll le cébne de lumiere de I'espace semi-
euclidien Ri**2 doté de I'écran canonique S(T A*}). Alors on

a:Lecone AZ‘_+11 est totalement ombilique.
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Son écran canonique !S'(TAZ"_‘H1 est proprement

totalement ombilique.

Preuve : (1) Utilisant les relations (2.8) et (2.11) et du fait que la

connexion V sur R7*2 est plate, ona: VX € (A7),

fo = ﬁxf = X (4.10)
Il en résulte, en utilisant (2.10) que
A}X +1(X)éE+X =0 (411)

En remplagant X par PX dans (4.11) et en tenant compte
que Ay est évalué dans (sr Azlff)), on obtient AzPX = —PX.
Il en résulte que le cbne AZI_":L1 est totalement ombilique avec p =
—1, c'est-a-dire : VX,Y € I‘(TAZ‘_’“l1 ,

B(X,Y)=—g(X,Y) (4.12)

(2) En utilisant les relations (4.8) et (4.12),0n a:

CX,PY) = g(AyX,PY)
1

q-1 -
(S e
i=0

Ainsi, on obtient : VX,Y € T(TAT*!),

cx,py)=-1 (z?;ol(xi)z)_1 gX.PY)m (413

Utilisant les relations (4.4), (4.8), (4.13) et puisque la
courbure de Riemann R de V est nulle, la courbure induite sur le
cone de lumiere ATl de I'espace semi-euclidien RJ'™*2 est
définie par: VX,Y € T(TATH!),

R(X,V)Z =

%(Zﬁgol(xi)z)_l {g(Y,2)PX — g(X,Z)PY}  (414)

Puisque le tenseur de Ricci Ric de IRII”” est nul, en utilisant
les relations (4.7), (4.8), (4.12), (4.14) et par un calcul direct, on
obtient le tenseur de Ricci induit sur le céne de lumiere A'q"_+11,

donné par la relation :vX,Y € I'(TAT*}),
Ric(X,Y) =

- {trAN +2 (zfgol(xi)z)_l} g(x,v) (4.15)

Ainsi le cone de lumiere A’,;’_*f de I'espace semi-euclidien

]Rg’*z est localement une hypersurface d’Einstein.

OBJETS GEOMETRIQUES INDUITS DU CONE
LOCALEMENT

En considérant un voisinage des coordonnées U AZ‘_+11 tel

que x™*1 >0 et x771 # 0, alors le fibré tangent T A7H! est
engendrée localement par la famille des champs de vecteurs
{&. X0, . Xg-2. Y, .
relations (3.13) et (3.16).

,Ym} ou les champs sont définis suivant les

Dans tout le calcul qui suit, on prend
-1

Fait1: Calculdes B(X,Y) et C(X,Y)

En utilisant les relations (4.12) et (4.13), localement les
composantes non nulles de secondes formes fondamentales B et
C sontdonnéespar:Vj,k=0,..,9q—2;Va,b=gq,..,m,

B(X, %)) = (x)" + 012 ;

1 N2 -
C(X;,X;) =50 [(xl) + (x4 1)2] .
B(Xj, Xi) =xixk, j#k;
C(X;, Xy) = 50292, j # ke ;
B(Ya Ya) = —[(x®)? + (x™*H)?] ;
(Y, Ya) = =5 0[(xD? + (x™1)?] ;
B(Y,Y,) =—x%%?,a+b;
C(Y,Y,) = —%Bxaxb ,a*h

Fait 2 : Calcul des AyX et A;X

En utilisant les relations (4.8) et (4.12), localement les
composantes non nulles des opérateurs formes Ay et A} sont
donnéespar:vj=0,..,q—2;Va=gq,..,m,

* 1

27
Ay =—Yq et AyYy=—20Y,

Fait 3: Calcul des VY et VY

En utilisant les relations (3.13), (3.14) et (3.16), localement
les composantes non nulles de la Connexion ¥ sont données par
Vj,k=0,..,9—2;Va,b=q,..,m,

fo =¢; 7§X]’ = ‘7Xjf =X,
nya = VYaf = Ya ;

_ _ ].6 -1 d )
ViKi = g T et

a
dxm+l

m+1

VYaYaz_an
_ o d .
VXij=—X]ﬁ(]¢k) ;
_ o a a

Vy,Yp = —x ﬁ(a;ﬁb) ;

= = 1 = 1
VfN =-N;, VX].N = EBX] s VYaN = EQYa
Fait 4 : Calcul des VY

En utilisant les relations (2.8), (3.13) et (3.16), localement les
composantes non nulles de la connexion induite V sur AZ‘_+11 sont
données par :vj,k=0,..,q—2;Va,b=gq,..,m,

Ved=§; VeXj=VyE=X,
VeYg =Wy, § =Y,
1 =
_ N2 _ .
Vy,Xj = —59 [(xq D2 + () ]f+xq 1 Z xtX;
i=0(+J)

1 . .
VXij = _Eex]xkf _x]xq_le ) ] * k

q-1 m
1
6= Z(xi)z Py Yo = =5 0LG™ 2 + (x)?JE + 2™ Z xY,
i=0 b=0(+a)
1
VYaYb = _ngaxbf _ xaxm+1yb , a=+b
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Fait 5 : Calcul des 7(X)
Quel que soitX € I'(TAT*!), ona
t(X) = g(VxN,§) = —=g(N, Vx§) = =g(N,X)

Ainsi localement la seule composante non nulle de la 1-

forme 7 est t(§) = —1.
Fait 6 : Calcul de la courbure R(X ,Y )Z

En utilisant la relation (4.14), localement les seules
composantes non nulles de la courbure de Riemann sont :Vj, k,
l=0,..,9—2;Va,b, c=q,..,m,

(DR(X;, X)X, = 50 (xIx1x, — x*x'x;),
pour j, k,l différents ;
2)R(X;, X )X; = —R(Xi, X;)X; =

1 . .

70 {((xf)z + (xq'l)z)X,c - (xka)Xj}
pourj * k
(3R, V)X = 50 (xPxY, — xx°Y)),

pour a, b, c différents ;
(D R(Yo, Yp)Yy = —R(Y,, Yo)Y, =
2O, — (902 + D))
,a#*bh
(5)R(Ya, X)Xy = =3 0xTxKYy = =R (X}, Ya) Xe
pourj *k;
(6)R(X;,Ya)Yy = 50xxX; = —R(Ye, X;)Y,

poura #b;

CONCLUSION

La technique développée par BENJACU et DUGGAL [1966]
permet de contourner le défaut de la normale TML qui se
retrouve contenue dans TM pour les hypersurfaces nulles.
Malheureusement cette technique crée une autre difficulté, la
multiplicité du fibré vectoriel écran S(TM). Il est donc impérieux
de réfléchir en terme d’une distribution écran de référence
(écran canonique) et d’étudier les objets géométriques induits
relatifs a cette distribution.

Dans cet article nous avons considéré la construction de
I’écran canonique des hypersurfaces nulles d’'un espace semi-
euclidien, en particulier celui du cone de lumiere AZ‘_+11 de ]RZ"”.
Les objets géométriques induits sur ce cbne ont été construits
localement et globalement. Les propriétés géométriques de ce
cOne ont été étudiées en généralisant certains résultats connus
utilisant les objets géométriques induits. Il est a remarquer, apres
cette étude, que I’écran canonique du cone admet des propriétés
géométriques assez préférées (I'intégrabilité, la conformité,
I’'ombilicité) qui ont permis une bonne description géométrique

de ce cone de lumiére.

Dans le futur, on s’intéressera sur d’autres construction des

fibrés vectoriels écrans de référence, entre autre I’écran naturelle

sur une hypersurface de Monge. Aussi construire analytiguement
I'écran canonique pour le cas général des hypersurfaces nulles

vérifiant les conditions d’admissibilité de I’écran canonique.

RESUME

Dans cette étude, nous avons présenté la construction de
I'écran canonique pour une classe des hypersurfaces de type
lumiére des espaces semi-euclidiens, en particulier celui du cone
de lumiere, suivant I'approche de BEJANCU et DUGGAL. Nous

avons démontré I'intégrabilité.

(Théoreme 4.1), la conformité (Théoreme 4.3) et I'ombilicité
(Théoreme 4.4) de I'écran canonique du cone de lumiere de
'espace semi-euclidien Rg‘” en général. Nous avons enfin
déduit les objets géométriques induits et les propriétés

géométriques de ce cbne de lumieére.

Mots clés

Distribution a écran canonique ; Hypersurface a écran conforme ;
Ecran intégrable ; Hypersurface totalement ombilique.

REFERENCES

AKIVIS M.A., GOLDBERG V.V. [2000]. On some methods of construction of
invariant normalizations of lightlikehypersurfaces, Differential
Geom. Appl. 12(2), 121-143.

ATINDOGBE C., DUGGAL K.L. [2004]. Conformal screen on lightlike
hypersurfaces, Int. J. of Pure and App. Math., 11, 421-442.

ATINDOGBE C., LUNGIAMBUDILA O., TOSSA J. [2013]. Scalar curvature
and Symmetry properties of Lightlikesubmanifolds, Turk J. Math.
37, 95-113.

BEJANCU A. [1993]. A canonical screen distribution on a degenerate
hypersurface.,Sci. Bull. Ser. A, Appl. Math. Phys., 55, 55-61.

BEJANCU A., DUGGAL K.L. [1996]. Lightlike submanifolds of semi-
Riemannian manifolds and applications, Kluwer Academic
Publishers, Dordrecht, Amsterdam.

BEJANCU A., FERRANDEZ A., LUCAS P. [1998]. A new viewpoint on
geometry of a lightlikehypersurface in a semi-Euclidean
space.,Saitama Math. J. 31-38.

DUGGAL K.L. [2007]. A report on canonical null curves and screen
distributions for Lightlike geometry, Acta. Appl. Math. 95, 135-149.

KUPELI D.N. [1987]. Degenerate submanifolds in semi-Riemannian
geometry, Geom. Dedicata, 24, 337-361.

SCHOUTEN J.A. [1928]. On non-holonomic connections, Proc. Kon. Akad.
Amsterdam, 31, 291-299.

[ ]

licensed under & Creative Commong Abltribution 4.0 Intermnational

This work is in opén Access,

License. The images or other third party material in this article are
ineluded in the article’s Creative Commaons license, unless indicated
otherwise in the credit ling; if the material is ok included under the
Creative Commaons license, users will need to abtain permission from the
license halder to reproduce the material, Te view a copy of this license,

wigit hitp:f/creativecommons.orgflicenses by /d4.0/

CONGOSCIENCES  VOLUME 8] NUMBER 3 | NOVEMBER 2020

http://www.congosciences.cd 142

© 2017 ACASTI and CEDESURK Online Journal. All rights reserved


http://www.congosciences.cd/

