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INTRODUCTION 

Il est naturel de trouver une sous-variété de type lumière 

dans une variété semi-Riemannienne à cause de sa métrique 

indéfinie. L’étude de ces sous-espaces est aussi intéressante, 

du point de vue physique, les hypersurfaces nulles 

représentent les modèles de plusieurs types d’horizons étudiés 

en relativité générale. A cause de la métrique induite 

dégénérée sur ces sous-espaces, il n’est pas possible d’étudier 

ces sous-espaces comme dans la théorie habituelle de la 

géométrie non-dégénérée. 

La théorie générale des sous-variétés de type lumière a 

été développée par KUPELI [1987]  et  par BEJANCU et  DUGGAL 

[1996] dont le travail a été présenté sous forme d’ouvrage. La 

principale différence entre les sous-variétés de type lumière et 

les sous-variétés non dégénérées est que dans le premier cas, 

le fibré vectoriel normal 𝑇𝑀⊥intercepte le fibré tangent 𝑇𝑀. 

Pour cette raison, dans la technique développée dans BEJANCU 

et  DUGGAL [1996], les auteurs ont introduit, pour les 

hypersurfaces nulles, une distribution écran non dégénérée 

𝑆(𝑇𝑀) et ont construit un vibré vectoriel transverse nul 

correspondant qui vient jouer le rôle de la normale comme 

dans le cas non dégénéré. Cette technique permet alors de 

définir les objets géométriques induits (la connexion, les 

secondes formes fondamentales,  les opérateurs formes, etc.) 

nécessaires pour la géométrie des sous-variétés. Il est à noter 

malheureusement que ces objets induits dépendent du choix 

de la distribution écran qui en général n’est pas unique. Ceci 

suscite des questionnements sur la construction d’une 

distribution écran canonique en géométrie dégénérée. 

Actuellement dans la littérature, il y a pas mal des travaux 

sur la question sous examen. On peut citer BEJANCU [1993], 

BEJANCU et al.   [1998], AKIVIS et GOLDBERG [2000], 

ATINDOGBE et DUGGAL [2004], DUGGAL [2007]  qui ont 

concouru dans ce sens, mais cela, pour des classes 

d’hypersurfaces bien définies. 

La présente étude est basée sur la construction de l’écran 

canonique présentée dans BEJANCU et  DUGGAL [1996]. Le but 
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de ce travail est d’étudier la géométrie du cône de lumière  Λ𝑞−1
𝑚+1 

doté d’un écran canonique et d’établir globalement et 

localement les propriétés et les objets géométriques induits sur 

cet espace de type lumière  Le travail est organisé comme suit : 

La section deux  présente la construction de la distribution écran 

et du fibré transverse nul ainsi que quelques relations de base sur 

les hypersurfaces de type lumière d’une variété semi-

Riemannienne suivant l’approche de BEJANCU et  DUGGAL 

[1996].  La section trois présente la construction de l’écran 

canonique sur une hypersurface de type lumière de l’espace 

semi-euclidien ℝ𝑞
𝑚+2 en général et sur le cône de lumière  Λ𝑞−1

𝑚+1 

de l’espace ℝ𝑞
𝑚+2 en particulier. La section quatre établit 

quelques résultats sur la géométrie du cône de lumière, entre 

autres l’intégrabilité de l’écran canonique (Théorème 4.1), 

suivant une approche autre que celle de la preuve donnée dans 

le Théorème 6.1 de  BEJANCU et  DUGGAL [1996]. La conformité 

de l’écran canonique de Λ𝑞−1
𝑚+1 , pour l’indice q en général 

(Théorème 4.3), résultat qui généralise celui de ATINDOGBE et 

DUGGAL [2004]. 

L’ombilicité totale de l’écran canonique et de celle du cône 

Λ𝑞−1
𝑚+1  a aussi été étudié (Théorème 4.4). Il a  ainsi été déduit 

quelques propriétés géométriques issues de ces résultats. Dans 

La section cinq établit les calculs des objets géométriques induits 

sur le cône de lumièreΛ𝑞−1
𝑚+1. 

HYPERSURFACES DE TYPE LUMIERE 

Soit 𝑀 une hypersurface d’une variété semi-Riemannienne 

(𝑀̅, 𝑔̅) de dimension 𝑚 + 2 avec 𝑚 > 0 d’indice 𝑞 ∈ {1,⋯ ,𝑚 +

1}. Comme pour tout 𝑢 ∈ 𝑀, l’espace vectoriel  𝑇𝑢𝑀 est un 

hyperplan de l’espace semi-euclidien (𝑇𝑢𝑀̅, 𝑔̅𝑢), on considère les 

sous-espaces orthogonal et radical de 𝑇𝑢𝑀 définis par : 

𝑇𝑢𝑀
⊥ = {𝑉𝑢 ∈ 𝑇𝑢𝑀̅; 𝑔̅𝑢(𝑉𝑢  ,𝑊𝑢) = 0, ∀𝑊𝑢 ∈ 𝑇𝑢𝑀} , 

et 

𝑅𝑎𝑑𝑇𝑢𝑀 = {𝜉𝑢 ∈ 𝑇𝑢𝑀;𝑔𝑢(𝜉𝑢 , 𝑉𝑢) = 0, ∀𝑉𝑢 ∈ 𝑇𝑢𝑀} 

= 𝑇𝑢𝑀 ∩ 𝑇𝑢𝑀
⊥. 

On dit que 𝑀 est une hypersurface de type lumière (nulle, 

dégénérée) de 𝑀̅ (ou équivalemment l’immersion de 𝑀 dans 𝑀̅ 

est de type lumière) si 𝑅𝑎𝑑𝑇𝑢𝑀 ≠ {0}, pour tout 𝑢 ∈ 𝑀. 

Proposition 2.1 ([BEJANCU et DUGGAL, 1996]). Soit (𝑀, 𝑔) une 

hypersurface de (𝑀̅, 𝑔̅) de dimension 𝑚 + 2. Alors les assertions 

suivantes sont équivalentes : 

(i) 𝑀 est une hypersurface de type lumière; 

(ii) 𝑔 est de rang constant m sur 𝑀 ; 

(iii) 𝑇𝑀⊥ = ⋃ 𝑇𝑢𝑀
⊥

𝑢∈𝑀 . 

Preuve :(i) ⇒(ii) : Puisque 𝑅𝑎𝑑𝑇𝑢𝑀 ≠ {0}, il existe un vecteur non 

zéro 𝜉𝑢 ∈ 𝑅𝑎𝑑𝑇𝑢𝑀,tel que 𝑔(𝜉𝑢, 𝑋𝑢) = 0 quel que soit 𝑋𝑢 ∈

𝑇𝑢𝑀. Ainsi, 𝑟𝑎𝑛𝑔(𝑔𝑢) <  𝑚 +  1. Mais aussi,  𝑟𝑎𝑛𝑔(𝑔𝑢) >  𝑚  

puisque 𝑑𝑖𝑚𝑇𝑢𝑀
⊥  =  1. Par conséquent 𝑟𝑎𝑛𝑔(𝑔𝑢)  =  𝑚, pour 

tout 𝑢 ∈ 𝑀. 

(ii) ⇒ (iii) : Comme 𝑟𝑎𝑛𝑔(𝑔𝑢) =  𝑚, il existe un vecteur non 

zéro 𝜉𝑢 ∈ 𝑇𝑢𝑀 , tel que 𝑔(𝜉𝑢, 𝑋𝑢) = 0, pour tout 𝑋𝑢 ∈ 𝑇𝑢𝑀. Il en 

résulte que 𝜉𝑢 ∈ 𝑇𝑢𝑀
⊥ . Ainsi, tout vecteur 𝑌𝑢 ∈ 𝑇𝑢𝑀

⊥peut 

s’écrire comme 𝑌𝑢  = 𝛼𝜉𝑢 , 𝛼 ∈ ℝ , ceci prouve que 𝑇𝑢𝑀
⊥ ⊂

 𝑇𝑢𝑀 et 𝑇𝑀⊥ = ⋃ 𝑇𝑢𝑀
⊥

𝑢∈𝑀 définit une distribution sur 𝑀. 

(iii) ⇒ (i) : 𝑇𝑀⊥étant un sous-fibré vectoriel de 𝑇𝑀, on 

𝑎 𝑅𝑎𝑑𝑇𝑀 =  𝑇𝑀⊥ ≠ 0. 

Ainsi l’hypersurface 𝑀 est dégénérée. ∎ 

De ce résultat, 𝑅𝑎𝑑𝑇𝑀 =  𝑇𝑀⊥ définit une distribution sur 

𝑀 de rang 1. La métrique semi-Riemannienne 𝑔̅ sur 𝑀̅ induit sur 

𝑀 un champ de tenseurs symétriques 𝑔 de rang 𝑚 et de type 

(0,2). Dans ce cas, 𝑀 est une sous-variété dégénérée de 𝑀̅ de 

codimension 1. Ces hypersurfaces ont un intérêt particulier en 

relativité générale, elles implémentent les modèles de certains 

types d’horizons. 

De ce qui précède, il n’est pas possible de décomposer le 

long de 𝑀, le fibré vectoriel tangent 𝑇𝑀̅ de l’espace ambiant 𝑀̅ 

en somme directe interne des composantes tangentielle et 

normale comme dans le cas classique des hypersurfaces non 

dégénérées, ceci du fait que 𝑇𝑀⊥ ⊂  𝑇𝑀. 

Pour résoudre cette difficulté, BEJANCU et  DUGGAL [1996] 

ont introduit une technique qui consiste à construire un fibré 

vectoriel supplémentaire non orthogonal à 𝑇𝑀dans 𝑇𝑀̅, qui 

jouera le rôle de 𝑇𝑀⊥comme dans le cas classique. 

Par cette approche, on considère un fibré vectoriel 

supplémentaire 𝑆(𝑇𝑀) de 𝑅𝑎𝑑𝑇𝑀 = 𝑇𝑀⊥dans 𝑇𝑀. On obtient 

la décomposition suivante : 

𝑇𝑀 =  𝑆(𝑇𝑀) ⨁𝑜𝑟𝑡ℎ𝑇𝑀
⊥   (2.1) 

Comme chaque 𝑆(𝑇𝑢𝑀) est le sous-espace vectoriel écran 

de 𝑇𝑢𝑀, d’après BEJANCU et  DUGGAL [1996], on appelle S(TM) 

une distribution écran sur M et elle est non dégénérée. En effet, 

en supposant un vecteur 𝑋𝑢  ∈  𝑆(𝑇𝑢𝑀) tel que 𝑔(𝑋𝑢 , 𝑌𝑢)  =  0, 

pour tout 𝑌𝑢  ∈  𝑆(𝑇𝑢𝑀), puisque en plus 𝑔(𝑋𝑢 , 𝜉𝑢)  =  0, pour 

tout 𝜉𝑢 ∈ 𝑇𝑢𝑀
⊥, on en déduit que 𝑋𝑢 ∈ 𝑅𝑎𝑑𝑇𝑢𝑀 = 𝑇𝑢𝑀

⊥. Ceci 

contredirait la relation (2.1). Il est à remarquer que la distribution 

écran 𝑆(𝑇𝑀) définie est de rang 𝑚 et elle n’est pas unique en 

général. 

Définition 2.2  Une hypersurface de type lumière (𝑀;  𝑔) d’une 

variété semi-Riemannienne (𝑀̅; 𝑔̅), munie d’une distribution 

écran 𝑆(𝑇𝑀) est dite normalisée par structure écran et on note 

(𝑀;  𝑔;  𝑆(𝑇𝑀)). 

Désignons par 𝑆(𝑇𝑀)⊥, le fibré vectoriel supplémentaire 

orthogonal à 𝑆(𝑇𝑀) dans 𝑇𝑀̅. On a le long de 𝑀 la 

décomposition suivante : 

𝑇𝑀̅|𝑀 =  𝑆(𝑇𝑀) ⨁𝑜𝑟𝑡ℎ𝑆(𝑇𝑀)
⊥   (2.2) 
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Suivant cette décomposition, on constate que 𝑆(𝑇𝑀)⊥  est 

aussi un fibré vectoriel non dégénéré de rang 2 contenant 𝑇𝑀⊥ =

𝑅𝑎𝑑𝑇𝑀 comme sous-fibré vectoriel. 

Théorème 2.3 ([BEJANCU et DUGGAL, 1996]). 

 Soit (𝑀;  𝑔;  𝑆(𝑇𝑀)) une hypersurface de type lumière 

normalisée d’une variété semi-Riemannienne (𝑀̅; 𝑔̅). Alors il 

existe un fibré vectoriel unique 𝑡𝑟(𝑇𝑀) de rang 1 le long de 𝑀, 

tel que pour toute section non zéro 𝜉 ∈ Γ(𝑅𝑎𝑑𝑇𝑀) sur le 

voisinage de coordonnées 𝒰 ⊂  𝑀, il existe une section unique 

𝑁 ∈ Γ(𝑡𝑟(𝑇𝑀)) sur 𝒰 vérifiant :  ∀𝑋 ∈ Γ (𝑆(𝑇𝑀)|𝒰), 

𝑔̅(𝑁, 𝜉) = 1 𝑒𝑡  𝑔̅(𝑁, 𝑁) =  𝑔̅(𝑁, 𝑋) = 0 (2.3) 

Preuve : Considérons un fibré vectoriel supplémentaire 𝐹 de 

𝑇𝑀⊥ dans 𝑆(𝑇𝑀)⊥  et prenons une section 𝑉 ∈ (𝐹|𝒰 ), 𝑉 ≠  0. 

Alors 𝑔̅(𝜉, 𝑉 )  ≠  0 sur 𝒰, au cas contraire le fibré vectoriel 

𝑆(𝑇𝑀)⊥ serait dégénéré. Définissons sur 𝒰, le champ de vecteurs 

𝑁 par : 

𝑁 =
1

𝑔̅(𝜉,𝑉 )
{𝑉 −

𝑔̅(𝑉,𝑉 )

2𝑔̅(𝜉; 𝑉 )
𝜉}. (2.4) 

Par un calcul direct, on peut montrer que les relations (2.3) 

sont vérifiées si et seulement si 𝑁prend la forme définie par la 

relation (2.4). 

Considérons un autre voisinage de coordonnées 𝒰 ∗  ⊂  𝑀 

qui est tel que 𝒰 ∩ 𝒰 ∗ ≠ 0. Les fibrés vectoriels 𝑇𝑀⊥ et 𝐹 étant 

de rang 1, on a que 𝜉∗ = 𝛼𝜉 et 𝑉∗ = 𝛽𝑉 , où 𝛼 et 𝛽 sont deux 

fonctions différentiables définies sur 𝒰 ∩ 𝒰 ∗. En remplaçant 

𝜉∗et 𝑉∗ dans (2.4), on trouve que 𝑁∗ et 𝑁 sont reliés sur 𝒰 ∩ 𝒰 ∗ 

par la relation 𝑁∗ =
1

𝛼
𝑁. Ceci montre que 𝐹 induit sur 𝑀 un fibré 

vectoriel noté par 𝑡𝑟(𝑇𝑀) tel que localement, les relations (2.3) 

soient satisfaites. 

Finalement, en considérant un autre fibré vectoriel 𝐸 

supplémentaire à 𝑇𝑀⊥ dans 𝑆(𝑇𝑀)⊥, en utilisant la relation (2.4) 

pour tous les fibrés 𝐹 et 𝐸, on obtient le même fibré 𝑡𝑟(𝑇𝑀). ∎ 

La relation (2.4) montre que le fibré vectoriel 𝑡𝑟(𝑇𝑀) est 

isotrope et on a 𝑡𝑟(𝑇𝑢𝑀) ∩  𝑇𝑢𝑀 = {0}, pour tout 𝑢 ∈  𝑀. Ainsi 

en considérant (2.2),  on obtient les décompositions suivantes: 

𝑇𝑀̅|𝑀 =  𝑆(𝑇𝑀) ⨁𝑜𝑟𝑡ℎ(𝑇𝑀
⊥⨁ 𝑡𝑟(𝑇𝑀)) (2.5) 

et 

𝑇𝑀̅|𝑀 =  𝑇𝑀 ⨁ 𝑡𝑟(𝑇𝑀)    (2.6) 

Il résulte de la construction (2.6) que pour un choix 

quelconque de la distribution écran 

𝑆(𝑇𝑀), il existe un fibré vectoriel isotrope unique 𝑡𝑟(𝑇𝑀), 

supplémentaire à 𝑇𝑀 dans 𝑇𝑀̅|𝑀 qui satisfait les relations (2.3). 

Le fibré 𝑡𝑟(𝑇𝑀) est appelé fibré vectoriel transverse nul de 𝑀 

relative à 𝑆(𝑇𝑀). 

Il est à remarquer que {𝑇𝑢𝑀
⊥⨁ 𝑡𝑟(𝑇𝑢𝑀)} = 𝑉𝑒𝑐𝑡{𝜉𝑢, 𝑁𝑢} 

est un plan hyperbolique, pour tout 𝑢 ∈ 𝑀, cela car la restriction 

de la métrique g sur ce plan admet comme signature {−,+}. Il en 

résulte qu’en utilisant la décomposition (2.5), la distribution 

écran 𝑆(𝑇𝑀) est non dégénérée et admet comme indice q-1. En 

particulier, la distribution écran d’une hypersurface de type 

lumière d’une variété de Lorentz est riemannienne, c’est à dire la 

restriction de la métrique sur 𝑆(𝑇𝑀) est définie positive. 

En utilisant la terminologie employée dans SCHOUTEN  

[1928], le fibré vectoriel 𝑡𝑟(𝑇𝑀) est considéré comme la normale 

à l’hypersurface dégénérée 𝑀 dans la variété semi-riemannienne 

𝑀̅. Il est possible dans les calculs de construire premièrement ce 

fibré transverse nul et ensuite obtenir sa distribution écran 

correspondante 𝑆(𝑇𝑀). Ceci est la démarche  à adopter ici pour 

la construction de la distribution écran canonique. 

Considérons (𝑀, 𝑔, 𝑆(𝑇𝑀)) une hypersurface de type 

lumière de la variété semi-Riemanniènne (𝑀̅; 𝑔̅) et 𝛻̅ la 

connexion de Levi-Civita sur 𝑀̅. En utilisant la décomposition (2.6) 

on a  les formules de Gauss et Weingarten suivantes : 

𝛻̅𝑋𝑌 = 𝛻𝑋𝑌 + ℎ(𝑋, 𝑌)  et  

𝛻̅𝑋𝑉 = −𝐴𝑁𝑋 + 𝛻𝑋
𝑡𝑉   (2.7) 

pour tous 𝑋, 𝑌 ∈ 𝛤(𝑇𝑀) et 𝑉 ∈ 𝛤(𝑡𝑟(𝑇𝑀)), où  𝛻𝑋𝑌 et 

𝐴𝑉𝑋 appartiennent à 𝛤(𝑇𝑀), ℎ(𝑋;  𝑌 ) et 𝛻𝑋
𝑡𝑉 appartiennent à 

𝛤(𝑡𝑟(𝑇𝑀)). Il est évident de voir que 𝛻 est une connexion sans 

torsion, ℎ est une ℱ(𝑀)-forme bilinéaire symétrique sur 𝛤(𝑇𝑀), 

évaluée dans 𝑡𝑟(𝑇𝑀), 𝐴𝑉  est un ℱ(𝑀)-opérateur linéaire sur 

𝛤(𝑇𝑀) et 𝛻𝑡  est une connexion linéaire sur 𝑡𝑟(𝑇𝑀). ℎ et 𝐴𝑉  sont 

respectivement appelés la seconde forme fondamentale et 

l’opérateur forme de l’hypersurface 𝑀. 

Considérant localement {𝜉,𝑁} une paire des sections de 

normalisation définies sur 𝒰 ⊂ 𝑀 dans le théorème 2.3. On 

définit  alors sur 𝒰 ⊂ 𝑀, une forme bilinéaire symétrique 𝐵 et 

une 1-forme 𝜏 par 𝐵(𝑋, 𝑌 )  =  𝑔(ℎ(𝑋, 𝑌 ), 𝜉)  et 𝜏(𝑋) =

𝑔̅(𝛻𝑋
𝑡𝑁, 𝜉) , 

pour tous 𝑋, 𝑌 ∈  Γ(𝑇𝑀). Ainsi de (2.7) on obtient les 

formules locales de Gauss et Weingarten suivantes :  

𝛻̅𝑋𝑌 = 𝛻𝑋𝑌 + 𝐵(𝑋, 𝑌)𝑁  et 

𝛻̅𝑋𝑁 = −𝐴𝑁𝑋 + 𝜏(𝑋)𝑁   (2.8) 

pour tous 𝑋, 𝑌 ∈ 𝛤(𝑇𝑀). 

Notons par 𝑃 le morphisme projection de 𝑇𝑀 sur 𝑆(𝑇𝑀) 

relativement à la décomposition orthogonale (2.1). On obtient les 

équations de Gauss et Weingarten pour la distribution écran 

𝑆(𝑇𝑀) suivantes: 𝛻𝑋𝑃𝑌 = 𝛻𝑋
∗𝑃𝑌 + ℎ∗(𝑋, 𝑃𝑌)  et 

𝛻𝑋𝑈 = −𝐴𝑈
∗ 𝑋 + 𝛻𝑋

∗𝑡𝑈    (2.9) 

pour tous 𝑋, 𝑌 ∈ 𝛤(𝑇𝑀), 𝑈 ∈ 𝛤(𝑇𝑀⊥). On note que 𝛻𝑋
∗𝑃𝑌 

et 𝐴𝑈
∗ 𝑋 appartiennent à 𝛤(𝑆(𝑇𝑀)) 

pendant que ℎ∗(𝑋, 𝑃𝑌) et 𝛻𝑋
∗𝑡𝑈 appartiennent à 𝛤(𝑇𝑀⊥). Il 

suit que 𝛻∗ et 𝛻∗𝑡 sont des connexions linéaires définies 

respectivement sur 𝑆(𝑇𝑀) et 𝑇𝑀⊥. ℎ∗ est une ℱ(𝑀)-forme 

bilinéaire sur 𝛤(𝑇𝑀) × 𝛤(𝑆(𝑇𝑀)) et 𝐴𝑈
∗  est une ℱ(𝑀)-
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opérateur linéaire sur 𝛤(𝑇𝑀). ℎ∗et 𝐴𝑈
∗  sont respectivement 

appelés la seconde forme fondamentale et l’opérateur forme de 

la distribution écran 𝑆(𝑇𝑀). 

Définissons localement sur 𝒰 : 

𝐶(𝑋, 𝑃𝑌 )  =  𝑔̅(𝛻𝑋𝑃𝑌,𝑁) et 𝜖(𝑋) = 𝑔̅(𝛻𝑋
∗𝑡𝜉,𝑁) 

pour tous 𝑋, 𝑌 ∈  Γ(𝑇𝑀). On remarque que  

ℎ∗(𝑋, 𝑃𝑌) = 𝐶(𝑋, 𝑃𝑌 )𝜉 et 𝜖(𝑋) = −𝜏(𝑋). 

Ainsi les équations de Gauss et Weingarten locales pour la 

distribution écran 𝑆(𝑇𝑀) sont définies par : 

𝛻𝑋𝑃𝑌 = 𝛻𝑋
∗𝑃𝑌 + 𝐶(𝑋, 𝑃𝑌)𝜉 et 

𝛻𝑋𝜉 = −𝐴𝜉
∗𝑋 − 𝜏(𝑋)𝜉    (2.10) 

Par un calcul direct, en utilisant (2.8) et (2.10) et puisque 

𝑔̅(𝛻̅𝑋𝜉, 𝜉) = 0, On obtient : 

𝐵(𝑋, 𝑃𝑌 ) = 𝑔(𝐴𝜉
∗𝑋, 𝑃𝑌)et 𝐵(𝑋, 𝜉)  = 0 (2.11) 

𝐶(𝑋, 𝑃𝑌 ) = 𝑔(𝐴𝑁𝑋;  𝑃𝑌 )  et 

𝑔̅(𝐴𝑁𝑋,𝑁) = 0    (2.12) 

pour tous 𝑋, 𝑌 ∈  Γ(𝑇𝑀). Il est important de mentionner 

que la seconde forme fondamentale locale 𝐵 est indépendant du 

choix de la distribution d’après BEJANCU et  DUGGAL [1996]. 

CONSTRUCTION DE L’ÉCRAN CANONIQU 

Soit ℝ𝑞
𝑚+2 un espace semi-euclidien muni de la métrique 𝑔̅ 

définie par : 

𝑔̅(𝑥, 𝑦) = −∑ 𝑥𝑖𝑦𝑖 +
𝑞−1
𝑖=0 ∑ 𝑥𝑎𝑦𝑎𝑚+1

𝑎=𝑞   (3.1) 

Considérons une hypersurface 𝑀 de ℝ𝑞
𝑚+2 définie 

localement par les équations : 𝑥𝐴 = 𝑓𝐴(𝑢0, … , 𝑢𝑚) ; 

𝑟𝑎𝑛𝑔 [
𝜕𝑓𝐴

𝜕𝑢𝛼
] = 𝑚 + 1   (3.2) 

Avec 𝐴 ∈ {0,… ,𝑚 + 1}, 𝛼 ∈ {0,… ,𝑚} et les 𝑓𝐴 sont des 

fonctions différentiables (lisses) sur un voisinage des 

coordonnées 𝒰 ⊂ 𝑀. Ainsi notons par : 

𝐷𝐴 = 

 

(

 

𝜕𝑓0

𝜕𝑢0
⋯

𝜕𝑓𝐴−1

𝜕𝑢0

⋮  ⋮
𝜕𝑓0

𝜕𝑢𝑚
⋯

𝜕𝑓𝐴−1

𝜕𝑢𝑚

𝜕𝑓𝐴+1

𝜕𝑢0
…

𝜕𝑓𝑚+1

𝜕𝑢0

⋮  ⋮
𝜕𝑓𝐴+1

𝜕𝑢𝑚
⋯

𝜕𝑓𝑚+1

𝜕𝑢𝑚 )

   (3.3) 

Notons que dans cette section, sauf mention contraire, les 

notations d’indices suivantes seront utilisées : 

𝐴, 𝐵, 𝐶 … ∈ {0,… ,𝑚 + 1} ;  𝛼, 𝛽, 𝛾…∈ {0,… ,𝑚} ;  𝑎, 𝑏, 𝑐 … ∈

{𝑞, … ,𝑚 + 1} ; 𝑖, 𝑗, 𝑘…∈ {0, … , 𝑞 − 1}. 

Le champ de bases naturelles sur le voisinage des 

coordonnées𝒰 ⊂ 𝑀, engendrant le fibré tangent 𝑇𝑀 est donné 

par : 

𝜕

𝜕𝑢𝛼
=
𝜕𝑓𝐴

𝜕𝑢𝛼
.
𝜕

𝜕𝑥𝐴
 , 𝛼 ∈ {0, … ,𝑚}  (3.4) 

Par un calcul direct, on peut montrer que le fibré normal 

𝑇𝑀⊥  =  𝑅𝑎𝑑𝑇𝑀 le long du voisinage des coordonnées 𝒰 ⊂ 𝑀 

est engendré par le champ de vecteurs : 

𝜉 = ∑(−1)𝑖𝐷𝑖
𝜕

𝜕𝑥𝑖
+ ∑(−1)𝑎−1𝐷𝑎

𝜕

𝜕𝑥𝑎
 (3.5) 

𝑚+1

𝑎=𝑞

𝑞−1

𝑖=0

 

Par conséquent, M est une hypersurface de type lumière si 

et seulement si 𝑔̅(𝜉, 𝜉) = 0, ce qui est équivalent à la condition : 

∑ (𝐷𝑖)
2
= ∑ (𝐷𝑎)2𝑚+1

𝑎=𝑞
𝑞−1
𝑖=0    (3.6) 

Comme vue dans la section précédente, la distribution écran 

joue un rôle important dans l’étude de la géométrie différentielle 

des hypersurfaces de type lumière. On montre   dans la suite la 

construction de cette distribution écran en utilisant les fonctions 

définies dans des équations locales d’une hypersurface de type 

lumière immergée dans un espace semi-euclidien. 

Observons premièrement qu’une section locale de 𝑇ℝ𝑞
𝑚+2 

définie sur 𝒰 ⊂ 𝑀  par : 

𝑉 = ∑(−1)𝑖𝐷𝑖−1
𝜕

𝜕𝑥𝑖

𝑞−1

𝑖=0

 (3.7) 

est nulle part tangente à l’hypersurface  M.  En effet, 

𝑔̅(𝑉, 𝜉)  =    ∑ (𝐷𝑖)
2𝑞−1

𝑖=0    (3.8) 

Et s’il existe un point 𝑢 ∈ 𝒰 tel que 𝑔̅(𝑉𝑢, 𝜉𝑢) = 0, alors en 

utilisant les relations (3.6) et (3.8), on voit clairement que tous les 

déterminants définis en (3.3) sont identiquement nuls. Ceci est 

une contradiction du fait que 𝑟𝑎𝑛𝑔 [
𝜕𝑓𝐴

𝜕𝑢𝛼
] = 𝑚 + 1 en tout point 

𝑢 ∈ 𝒰. Ensuite, la section donnée par la relation (3.7) sur chaque 

voisinage de coordonnées 𝒰 engendre un fibré vectoriel L au-

dessus de 𝑀de 𝑟𝑎𝑛𝑔 =  1. 

Considérons le fibré vectoriel défini par 𝐻 = 𝑇𝑀⊥⨁  𝐿  au 

dessus de 𝑀, qui est non-dégénéré relativement à la métrique 

euclidienne 𝑔̅. En effet, supposons qu’il existe un point 𝑢 ∈ 𝒰 et 

un seul vecteur non-zéro 𝑋𝑢 ∈ 𝐻𝑢, tel que 𝑔̅𝑢(𝑋𝑢, 𝜉𝑢) = 0  et   

𝑔̅𝑢(𝑋𝑢, 𝑉𝑢) = 0 

Alors de la première égalité, on déduit que 𝑋𝑢 ∈ 𝑇𝑢𝑀. Mais 

𝑇𝑢𝑀 ∩ 𝐻𝑢 = 𝑇𝑢𝑀
⊥, et par conséquent le vecteur 𝑋𝑢 est 

colinéaire au vecteur 𝜉𝑢. Ainsi 𝑔̅𝑢(𝑋𝑢, 𝑉𝑢) ≠ 0, ceci contredit la 

seconde égalité. 

Finalement, prenons le fibré vectoriel 𝑆(𝑇𝑀), 

complémentaire et orthogonal à 𝐻 dans 𝑇ℝ𝑞
𝑚+2 au-dessus de 𝑀. 

Comme 𝑆(𝑇𝑀) est orthogonal à 𝑇𝑀⊥, 𝑆(𝑇𝑀) ∩ 𝑇𝑀⊥  =  {0}, et 

il est de 𝑟𝑎𝑛𝑔 =  𝑚. Il suit que 𝑆(𝑇𝑀) définit une distribution 

sur 𝑀 et 𝑇𝑀 =  𝑆(𝑇𝑀) ⨁𝑜𝑟𝑡ℎ𝑇𝑀
⊥. 

Par conséquent S(TM) est une distribution sur 𝑀 appelée 

distribution écran canonique sur𝑀. 

Ensuite, en utilisant les relations (2.4), (3.7) et (3.8), on 

obtient : 
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𝑁 = (∑ (𝐷𝑖)
2𝑞−1

𝑖=0 )
−1
(𝑉 +

1

2
𝜉)  (3.9) 

Le fibré vectoriel engendré localement par 𝑁 ci-dessus est 

appelé fibré vectoriel transverse canonique nul. Il est clair que le 

choix de la paire des sections {𝜉, 𝑁} définies en (3.5) et (3.9) ou 

équivalemment le triplet (𝑀, 𝑔, 𝑆(𝑇𝑀)) où 𝑆(𝑇𝑀) est la 

distribution écran canonique ci-dessus, définit ce qu’on appelle la 

normalisation canonique de l’hypersurface 𝑀. 

Exemple 3.1 (Cône de lumière Λ𝑞−1
𝑚+1  ) 

Soit un espace semi-euclidien ℝ𝑞
𝑚+2 , c’est à dire l’espace 

ℝ𝑚+2 muni de la métrique semi-euclidienne définie par : 

𝑔̅(𝑥, 𝑦) = −∑ 𝑥𝑖𝑦𝑖 +
𝑞−1
𝑖=0

∑ 𝑥𝑎𝑦𝑎𝑚+1
𝑎=𝑞   (3.10) 

Alors, le cône de lumière Λ𝑞−1
𝑚+1  de ℝ𝑞

𝑚+2 est donné par 

l’équation 

∑ (𝑥𝑖)
2
−

𝑞−1
𝑖=0 ∑ (𝑥𝑎)2 = 0;   𝑝𝑜𝑢𝑟   𝑥 ≠ 0𝑚+1

𝑎=𝑞  (3.11) 

En considérant l’immersion locale définie par : 

𝑥0 = 𝑢0,…,𝑥𝑚 = 𝑢𝑚 , 

𝑥𝑚+1 = ±[∑ (𝑥𝑖)
2
−

𝑞−1
𝑖=0 ∑ (𝑥𝑎)2𝑚

𝑎=𝑞 ]

1

2  (3.12) 

par un calcul direct, on montre que Λ𝑞−1
𝑚+1  est une 

hypersurface de type lumière (ou dégénérée) de l’espace ℝ𝑞
𝑚+2 

et la distribution radicale 𝑅𝑎𝑑𝑇Λ𝑞−1
𝑚+1 est engendrée par un 

champ de vecteur global sur Λ𝑞−1
𝑚+1 donné par : 

𝜉 = ∑ 𝑥𝐴
𝜕

𝜕𝑥𝐴
𝑚+1
𝐴=0     (3.13) 

L’unique section vérifiant les relations (2.3) et engendrant le 

fibré vectoriel transverse canonique nul 𝑡𝑟(𝑇 Λ𝑞−1
𝑚+1) est définie 

globalement sur Λ𝑞−1
𝑚+1 par : 

𝑁 =
1

2
(∑ (𝑥𝑖)

2𝑞−1
𝑖=0 )

−1
(−∑ 𝑥𝑖

𝜕

𝜕𝑥𝑖
+∑ 𝑥𝑎

𝜕

𝜕𝑥𝑎
𝑚+1
𝑎=𝑞

𝑞−1
𝑖=0 ) 

      (3.14) 

Ainsi la distribution écran canonique correspondante 

𝑆(𝑇 Λ𝑞−1
𝑚+1) est engendrée par des champs de vecteurs de type  

𝑋 = ∑ 𝑋𝐴
𝜕

𝜕𝑥𝐴

𝑚+1

𝐴=0

 

vérifiant les relations : 

∑ 𝑥𝑖𝑋𝑖 = 0 ;∑ 𝑥𝑎𝑋𝑎 = 0𝑚+1
𝑎=𝑞

𝑞−1
𝑖=0   (3.15) 

en tout point de Λ𝑞−1
𝑚+1. En considérant un voisinage des 

coordonnées 𝒰 ⊂ Λ𝑞−1
𝑚+1 tel que 𝑥𝑚+1 > 0 et 𝑥𝑞−1 ≠ 0, alors par 

un calcul direct en utilisant la relation (3.14), la distribution écran 

canonique est engendrée localement par la famille des champs 

de vecteurs {𝑋0, … , 𝑋𝑞−2, 𝑌𝑞 , … , 𝑌𝑚} définis par : 

𝑋𝑗 = 𝑥
𝑞−1 𝜕

𝜕𝑥𝑗
− 𝑥𝑗

𝜕

𝜕𝑥𝑞−1
   et 

𝑌𝑏 = 𝑥
𝑚+1 𝜕

𝜕𝑥𝑏
− 𝑥𝑏

𝜕

𝜕𝑥𝑚+1
    (3.16) 

pour tout 𝑗 ∈ {0, … , 𝑞 − 1} et  𝑏 ∈ {𝑞,… ,𝑚}. ∎ 

 

GEOMETRIE DE L’HYPERSURFACE A  

Ecran canonique 

Dans cette section seront étudiés quelques résultats 

importants de la géométrie extrinsèque des hypersurfaces de 

type lumière dotées d’une distribution écran canonique. On 

considère en général une hypersurface (𝑀, 𝑔, 𝑆(𝑇𝑀)) d’une 

variété semi-Riemannienne (𝑀̅; 𝑔̅). 

Une hypersurface de type lumière (𝑀, 𝑔, 𝑆(𝑇𝑀)) d’une 

variété semi-Riemannienne (𝑀̅; 𝑔̅) est dite totalement 

ombilique si localement sur un voisinage de coordonnées  ⊂ 𝑀 , 

il existe une fonction différentiable 𝜌 telle que ∀𝑋, 𝑌 ∈ Γ(𝑇𝑀|𝒰), 

𝐵(𝑋, 𝑌 )  =  𝜌𝑔(𝑋, 𝑌 )  (4.1) 

La distribution écran 𝑆(𝑇𝑀) est dite totalement ombilique 

si sur tout voisinage de coordonnées 𝒰 ⊂ 𝑀, il existe une 

fonction différentiable 𝜆 telle que ∀𝑋, 𝑌 ∈ Γ(𝑇𝑀|𝒰), 

𝐶(𝑋, 𝑃𝑌 )  =  𝜆𝑔(𝑋, 𝑌 )  (4.2) 

Dans le cas où 𝜆 = 0 (𝜆 ≠ 0) sur 𝒰, on dit que la distribution 

écran 𝑆(𝑇𝑀) est totalement géodésique (ou proprement 

totalement ombilique). 

La distribution écran 𝑆(𝑇𝑀) est dite intégrable si sur toutes 

sections 𝑋, 𝑌 ∈  𝛤(𝑆(𝑇𝑀)), alors [𝑋, 𝑌 ] ∈ 𝛤(𝑆(𝑇𝑀)) . 

(𝑀, 𝑔, 𝑆(𝑇𝑀)) est dite hypersurface à écran localement 

conforme dans ATINDOGBE et DUGGAL [2004] si les opérateurs 

forme 𝐴𝑁  et 𝐴𝜉
∗  de 𝑀 et de la distribution écran 𝑆(𝑇𝑀) sont reliés 

par la relation 

𝐴𝑁 = 𝜑𝐴𝜉
∗      (4.3) 

où 𝜑 est une fonction différentiable non-nulle sur le 

voisinage de coordonnées 𝒰 ⊂ 𝑀. En 

particulier l’hypersurface est dite à écran globalement 

conforme si  𝒰 = 𝑀. 

Soient 𝛻̅ et 𝛻 , la connexion de Levi-Civita de 𝑀̅ et la 

connexion induite sur 𝑀.  On note par 𝑅 ̅et𝑅 les tenseurs de 

courbure de Riemann de 𝛻̅ et 𝛻, respectivement. L’équation de 

Gauss de l’hypersurface de type lumière, dépendant 

certainement du choix de l’écran 𝑆(𝑇𝑀) est définie par  BEJANCU 

et  DUGGAL [1996] : Pour tous 𝑋, 𝑌, 𝑍 ∈ Γ(𝑇𝑀|𝒰) 

𝑅̅(𝑋, 𝑌 )𝑍 =  𝑅(𝑋, 𝑌 )𝑍 +  𝐵(𝑋, 𝑍)𝐴𝑁𝑌 

−𝐵(𝑌, 𝑍)𝐴𝑁𝑋 + (𝛻𝑋𝐵)(𝑌, 𝑍)𝑁  

+𝐵(𝑌, 𝑍)𝜏(𝑋)𝑁 − (𝛻𝑌𝐵)(𝑋, 𝑍)𝑁 

−𝐵(𝑋, 𝑍)𝜏(𝑌)𝑁    (4.4) 

Notons par 𝑅(0,2)  le tenseur induit de type (0, 2) sur 𝑀, 

donné par : ∀𝑋, 𝑌, 𝑍 ∈ Γ(𝑇𝑀|𝒰), 

𝑅(0,2) = 𝑡𝑟𝑎𝑐𝑒 { 𝑍 → 𝑅(𝑍, 𝑋)𝑌 }  (4.5) 

Puisque la connexion induite 𝛻 sur 𝑀 n’est pas métrique, en 

général le tenseur 𝑅(0,2) n’est pas symétrique. En considérant 

dans un voisinage de coordonnées ⊂ 𝑀 , un champ des bases 

http://www.congosciences.cd/


http://www.congosciences.cd 140 

 
 

 CONGOSCIENCES     VOLUME 8| NUMBER 3 | NOVEMBER 2020 

© 2017 ACASTI and CEDESURK Online Journal. All rights reserved 

ARTICLE 

locales {𝜉,𝑊𝑎} sur 𝑀 et son correspondant {𝜉,𝑊𝑎, 𝑁} sur 𝑀̅ 

relativement aux décompositions (2.1) et (2.5), ce tenseur est 

défini par :  ∀𝑋, 𝑌 ∈ Γ(𝑇𝑀|𝒰), 

𝑅(0,2)(𝑋, 𝑌) = 𝑔̅(𝑅(𝜉, 𝑋)𝑌, 𝑁) 

+∑ 𝜖𝑎𝑏𝑔(𝑅(𝑊𝑎, 𝑋)𝑌,𝑊𝑏)
𝑚
𝑎,𝑏=1   (4.6) 

où 𝜖𝑎𝑏 = 𝑔(𝑊𝑎,𝑊𝑏). Par un calcul direct, en utilisant la 

relation (4.4) dans (4.6) suivant la technique développée dans 

ATINDOGBE et al. [2013], on obtient la relation :  ∀𝑋, 𝑌 ∈

Γ(𝑇𝑀|𝒰), 

𝑅(0,2)(𝑋, 𝑌) = 𝑅̅𝑖𝑐(𝑋, 𝑌) + 𝐵(𝑋, 𝑌)𝑡𝑟𝐴𝑁  

−𝑔(𝐴𝑁𝑋, 𝐴𝜉
∗𝑌) − 𝑔̅(𝑅(𝜉, 𝑌)𝑋, 𝑁)  (4.7) 

où 𝑅̅𝑖𝑐 est le tenseur de Ricci de 𝑀̅. Notons que 𝑅(0,2) 

devient le tenseur de Ricci induit sur 𝑀s’il est symétrique. Dans 

ce cas, on le note 𝑅𝑖𝑐. 

Théorème 4.1 La distribution écran canonique 𝑆(𝑇 Λ𝑞−1
𝑚+1) du 

cône de lumière Λ𝑞−1
𝑚+1 d’un espace semi-euclidienne ℝ𝑞

𝑚+2 est 

intégrable. 

Preuve : Considérons l’écran canonique 𝑆(𝑇𝑀) de 𝑀 défini dans 

la section 3. Soient 𝑋, 𝑌 ∈  𝛤(𝑆(𝑇𝑀)). En tenant compte que 𝛻̅ 

est une connexion plate de Levi-Civita (métrique et 

sans torsion) sur l’espace semi-euclidien ℝ𝑞
𝑚+2, en utilisant 

les relations (2.8), (3.13) et (3.14), puisque la seconde forme 

fondamentale 𝐵 est symétrique et le tenseur de torsion 

𝜏(𝑋, 𝑌) = 𝛻̅𝑋𝑌 − 𝛻̅𝑌𝑋 − [𝑋, 𝑌], 

on a : 

𝑔̅([𝑋, 𝑌], 𝑁) = 

1

2
(∑(𝑥𝑖)

2

𝑞−1

𝑖=0

)

−1

𝑔̅ (𝛻̅𝑋𝑌 − 𝛻̅𝑌𝑋, 𝜉 − 2∑𝑥𝑖
𝜕

𝜕𝑥𝑖

𝑞−1

𝑖=0

) 

= (∑(𝑥𝑖)
2

𝑞−1

𝑖=0

)

−1

∑𝑥𝑖 {𝑔̅ (𝛻̅𝑌𝑋,
𝜕

𝜕𝑥𝑖
) − 𝑔̅ (𝛻̅𝑋𝑌,

𝜕

𝜕𝑥𝑖
)}

𝑞−1

𝑖=0

 

= (∑(𝑥𝑖)
2

𝑞−1

𝑖=0

)

−1

∑𝑥𝑖 {𝑔̅ (𝑋, 𝛻̅𝑌
𝜕

𝜕𝑥𝑖
) − 𝑔̅ (𝑌, 𝛻̅𝑋

𝜕

𝜕𝑥𝑖
)}

𝑞−1

𝑖=0

 

         = 0. 

Par conséquent [𝑋, 𝑌 ] ∈ 𝑆(𝑇 Λ𝑞−1
𝑚+1)  et ainsi la distribution 

écran 𝑆(𝑇 Λ𝑞−1
𝑚+1) est intégrable. ∎ 

Le résultat donné dans le théorème 4.1 définit l’intégrabilité 

de la distribution écran canonique du cône de lumière d’un 

espace semi-euclidien, quel que soit l’indice 𝑞. En utilisant les 

relations (2.8), (2.10) et (2.12), on a pour tous 𝑋, 𝑌 ∈ 𝑆(𝑇 Λ𝑞−1
𝑚+1) : 

𝐶(𝑋, 𝑌 ) − 𝐶(𝑌, 𝑋) = 𝑔̅(𝛻̅𝑋𝑌 − 𝛻̅𝑌𝑋,𝑁) 

                                    = 𝑔̅([𝑋, 𝑌], 𝑁) 

                           = 0. 

Il en résulte que la seconde forme fondamentale ℎ∗ (ou 𝐶) 

de 𝑆(𝑇 Λ𝑞−1
𝑚+1) est symétrique sur 𝑆(𝑇 Λ𝑞−1

𝑚+1) et l’opérateur forme 

𝐴𝑁  du cône est symétrique relativement la métrique induite 𝑔 

sur Λ𝑞−1
𝑚+1. 

En utilisant le résultat de BEJANCU et  DUGGAL [1996], il suit 

que les courbes intégrales de 𝜉  sur le Cône Λ𝑞−1
𝑚+1 sont des 

géodésiques nulles de l’espace ℝ𝑞
𝑚+2 et par conséquent ce sont 

des portions de droites. Les deux distributions 𝑆(𝑇 Λ𝑞−1
𝑚+1) et 

𝑅𝑎𝑑𝑇Λ𝑞−1
𝑚+1 sont toutes intégrables sur le cône Λ𝑞−1

𝑚+1. Ainsi on a 

le résultat suivant : 

Corollaire 4.2 Le cône de lumière Λ𝑞−1
𝑚+1 d’un espace semi-

euclidien ℝ𝑞
𝑚+2  est localement le produit 𝑑 ×  𝑀, où d est une 

ligne droite et 𝑀 est une sous-variété semi-Riemannienne de 

ℝ𝑞
𝑚+2 d’indice 𝑞 − 1. 

Le résultat suivant généralise le résultat de ATINDOGBE et 

DUGGAL [2004], en considérant l’indice quelconque 𝑞. 

Théorème 4.3 Le cône de lumière Λ𝑞−1
𝑚+1  d’un espace semi-

euclidien ℝ𝑞
𝑚+2 est une hypersurface à écran globalement 

conforme. 

Preuve : Considérons l’écran canonique 𝑆(𝑇 Λ𝑞−1
𝑚+1) du cône de 

lumière Λ𝑞−1
𝑚+1 défini dans l’exemple 3.1. Soient 𝑋, 𝑌 ∈ Γ(𝑇Λ𝑞−1

𝑚+1). 

En tenant compte de la connexion plate de Levi-Civita sur l’espace 

semi-euclidien ℝ𝑞
𝑚+2, en utilisant les relations (2.8), (3.13) et 

(3.14) On a ce qui suit : 

𝐶(𝑋, 𝑌) = 𝑔̅(𝛻𝑋𝑃𝑌,𝑁) 

 = 𝑔̅(𝛻̅𝑋𝑃𝑌,𝑁) 

=
1

2
(∑(𝑥𝑖)

2

𝑞−1

𝑖=0

)

−1

𝑔̅ (𝛻̅𝑋𝑃𝑌, 𝜉 − 2∑𝑥𝑖
𝜕

𝜕𝑥𝑖

𝑞−1

𝑖=0

) 

= 
1

2
(∑(𝑥𝑖)

2

𝑞−1

𝑖=0

)

−1

{𝐵(𝑋, 𝑃𝑌) − 2∑𝑥𝑖𝑔̅ (𝛻̅𝑋𝑃𝑌,
𝜕

𝜕𝑥𝑖
)

𝑞−1

𝑖=0

} 

= 
1

2
(∑(𝑥𝑖)

2

𝑞−1

𝑖=0

)

−1

{𝐵(𝑋, 𝑃𝑌) + 2∑𝑥𝑖𝑔̅ (𝑃𝑌, 𝛻̅𝑋
𝜕

𝜕𝑥𝑖
)

𝑞−1

𝑖=0

} 

= 
1

2
(∑(𝑥𝑖)

2

𝑞−1

𝑖=0

)

−1

𝐵(𝑋, 𝑃𝑌) 

Il en résulte, en utilisant les relations (2.11) et (2.12), que : 

∀𝑋 ∈ Γ(𝑇Λ𝑞−1
𝑚+1), 

𝐴𝑁𝑋 =
1

2
(∑ (𝑥𝑖)

2𝑞−1
𝑖=0 )

−1
𝐴𝜉
∗𝑋   (4.8) 

Ainsi l’hypersurface est à écran globalement conforme, où la 

fonction différentiable non-nulle sur 𝑀 est définie par : 

𝜑(𝑥) =
1

2
(∑ (𝑥𝑖)

2𝑞−1
𝑖=0 )

−1
               ∎  (4.9) 

Théorème 4.4 Soit Λ𝑞−1
𝑚+1 le cône de lumière de l’espace semi-

euclidien ℝ𝑞
𝑚+2  doté de l’écran canonique 𝑆(𝑇 Λ𝑞−1

𝑚+1). Alors on 

a : Le cône Λ𝑞−1
𝑚+1 est totalement ombilique. 
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Son écran canonique 𝑆(𝑇 Λ𝑞−1
𝑚+1) est proprement  

totalement ombilique. 

Preuve : (1) Utilisant les relations (2.8) et (2.11) et du fait que la 

connexion 𝛻̅ sur ℝ𝑞
𝑚+2 est plate, on a :  ∀𝑋 ∈ Γ(Λ𝑞−1

𝑚+1), 

𝛻𝑋𝜉 = 𝛻̅𝑋𝜉 = 𝑋    (4.10) 

Il en résulte, en utilisant (2.10) que 

𝐴𝜉
∗𝑋 + 𝜏(𝑋)𝜉 + 𝑋 = 0   (4.11) 

En remplaçant 𝑋 par 𝑃𝑋 dans (4.11) et en tenant compte 

que 𝐴𝜉
∗  est évalué dans (𝑆(𝑇 Λ𝑞−1

𝑚+1)), on obtient 𝐴𝜉
∗𝑃𝑋 = −𝑃𝑋. 

Il en résulte que le cône Λ𝑞−1
𝑚+1 est totalement ombilique avec 𝜌 =

−1, c'est-à-dire : ∀𝑋, 𝑌 ∈ Γ(𝑇Λ𝑞−1
𝑚+1), 

𝐵(𝑋, 𝑌 ) = −𝑔(𝑋, 𝑌 )  (4.12) 

(2) En utilisant les relations (4.8) et (4.12), on a : 

𝐶(𝑋, 𝑃𝑌) = 𝑔̅(𝐴𝑁𝑋, 𝑃𝑌) 

=
1

2
(∑(𝑥𝑖)

2

𝑞−1

𝑖=0

)

−1

𝑔(𝐴𝜉
∗𝑋, 𝑃𝑌) 

Ainsi, on obtient :  ∀𝑋, 𝑌 ∈ Γ(𝑇Λ𝑞−1
𝑚+1), 

𝐶(𝑋, 𝑃𝑌) = −
1

2
(∑ (𝑥𝑖)

2𝑞−1
𝑖=0 )

−1
𝑔(𝑋, 𝑃𝑌) ∎  (4.13) 

Utilisant les relations (4.4), (4.8), (4.13) et puisque la 

courbure de Riemann 𝑅̅ de 𝛻̅ est nulle, la courbure induite sur le 

cône de lumière Λ𝑞−1
𝑚+1 de l’espace semi-euclidien ℝ𝑞

𝑚+2 est 

définie par :  ∀𝑋, 𝑌 ∈ Γ(𝑇Λ𝑞−1
𝑚+1) , 

𝑅(𝑋, 𝑌)𝑍 = 

1

2
(∑ (𝑥𝑖)

2𝑞−1
𝑖=0 )

−1
{𝑔(𝑌, 𝑍)𝑃𝑋 − 𝑔(𝑋, 𝑍)𝑃𝑌} (4.14) 

Puisque le tenseur de Ricci 𝑅̅𝑖𝑐  de ℝ𝑞
𝑚+2 est nul, en utilisant 

les relations (4.7), (4.8), (4.12), (4.14) et par un calcul direct, on 

obtient le tenseur de Ricci induit sur le cône de lumière Λ𝑞−1
𝑚+1, 

donné par la relation :∀𝑋, 𝑌 ∈ Γ(𝑇Λ𝑞−1
𝑚+1), 

𝑅𝑖𝑐(𝑋, 𝑌) = 

−{𝑡𝑟𝐴𝑁 +
1

2
(∑ (𝑥𝑖)

2𝑞−1
𝑖=0 )

−1
} 𝑔(𝑋, 𝑌)  (4.15) 

Ainsi le cône de lumière Λ𝑞−1
𝑚+1 de l’espace semi-euclidien 

ℝ𝑞
𝑚+2 est localement une hypersurface d’Einstein. 

OBJETS GEOMETRIQUES INDUITS DU CONE 

LOCALEMENT 

En considérant un voisinage des coordonnées 𝒰 ⊂ Λ𝑞−1
𝑚+1 tel 

que 𝑥𝑚+1 > 0 et 𝑥𝑞−1 ≠ 0, alors le fibré tangent 𝑇 Λ𝑞−1
𝑚+1  est 

engendrée localement par la famille des champs de vecteurs 

{𝜉, 𝑋0, … , 𝑋𝑞−2, 𝑌𝑞 , … , 𝑌𝑚} où les champs sont définis suivant les 

relations (3.13) et (3.16). 

Dans tout le calcul qui suit, on prend  

𝜃 = (∑(𝑥𝑖)
2

𝑞−1

𝑖=0

)

−1

 

 

Fait 1 : Calcul des 𝑩(𝑿, 𝒀) et 𝑪(𝑿, 𝒀) 

En utilisant les relations (4.12) et (4.13), localement les 

composantes non nulles de secondes formes fondamentales 𝐵 et 

𝐶 sont données par : ∀𝑗, 𝑘 = 0, … , 𝑞 − 2 ; ∀𝑎, 𝑏 = 𝑞, … , 𝑚,  

𝐵(𝑋𝑗 , 𝑋𝑗) = (𝑥
𝑗)
2
+ (𝑥𝑞−1)2 ; 

𝐶(𝑋𝑗 , 𝑋𝑗) =
1

2
𝜃 [(𝑥𝑗)

2
+ (𝑥𝑞−1)2]  ; 

𝐵(𝑋𝑗 , 𝑋𝑘) = 𝑥
𝑗𝑥𝑘  ,  𝑗 ≠ 𝑘 ; 

𝐶(𝑋𝑗 , 𝑋𝑘) =
1

2
𝜃𝑥𝑗𝑥𝑘  ,  𝑗 ≠ 𝑘 ; 

𝐵(𝑌𝑎, 𝑌𝑎) = −[(𝑥
𝑎)2 + (𝑥𝑚+1)2] ; 

𝐶(𝑌𝑎, 𝑌𝑎) = −
1

2
𝜃[(𝑥𝑎)2 + (𝑥𝑚+1)2] ; 

𝐵(𝑌𝑎, 𝑌𝑏) = −𝑥
𝑎𝑥𝑏 ,  𝑎 ≠ 𝑏 ; 

𝐶(𝑌𝑎, 𝑌𝑏) = −
1

2
𝜃𝑥𝑎𝑥𝑏  ,  𝑎 ≠ 𝑏 

Fait 2 : Calcul des 𝑨𝑵𝑿 et  𝑨𝝃
∗𝑿 

En utilisant les relations (4.8) et (4.12), localement les 

composantes non nulles des opérateurs formes 𝐴𝑁  et 𝐴𝜉
∗  sont 

données par : ∀𝑗 = 0, … ,𝑞 − 2 ; ∀𝑎 = 𝑞, … , 𝑚,  

𝐴𝜉
∗𝑋𝑗 = −𝑋𝑗    et    𝐴𝑁𝑋𝑗 = −

1

2
𝜃𝑋𝑗  

𝐴𝜉
∗𝑌𝑎 = −𝑌𝑎   et    𝐴𝑁𝑌𝑎 = −

1

2
𝜃𝑌𝑎 

Fait 3 : Calcul des 𝜵̅𝑿𝒀 et 𝜵̅𝑿𝒀 

En utilisant les relations (3.13), (3.14) et (3.16), localement 

les composantes non nulles de la Connexion  𝛻̅  sont données par 

:∀𝑗, 𝑘 = 0, … , 𝑞 − 2 ; ∀𝑎, 𝑏 = 𝑞, … , 𝑚, 

𝛻̅𝜉𝜉 = 𝜉 ;   𝛻̅𝜉𝑋𝑗 = 𝛻̅𝑋𝑗𝜉 = 𝑋𝑗  ; 

𝛻̅𝜉𝑌𝑎 = 𝛻̅𝑌𝑎𝜉 = 𝑌𝑎  ; 

𝛻̅𝑋𝑗𝑋𝑗 = −𝑥
𝑗
𝜕

𝜕𝑥𝑗
− 𝑥𝑞−1

𝜕

𝜕𝑥𝑞−1
  ; 

𝛻̅𝑌𝑎𝑌𝑎 = −𝑥
𝑎
𝜕

𝜕𝑥𝑎
− 𝑥𝑚+1

𝜕

𝜕𝑥𝑚+1
  ; 

𝛻̅𝑋𝑗𝑋𝑘 = −𝑥
𝑗
𝜕

𝜕𝑥𝑘
(𝑗 ≠ 𝑘)   ; 

𝛻̅𝑌𝑎𝑌𝑏 = −𝑥
𝑎
𝜕

𝜕𝑥𝑏
(𝑎 ≠ 𝑏)   ; 

𝛻̅𝜉𝑁 = −𝑁  ;   𝛻̅𝑋𝑗𝑁 =
1

2
𝜃𝑋𝑗 ;  𝛻̅𝑌𝑎𝑁 =

1

2
𝜃𝑌𝑎 

Fait 4 : Calcul des 𝜵𝑿𝒀 

En utilisant les relations (2.8), (3.13) et (3.16), localement les 

composantes non nulles de la connexion induite 𝛻 sur Λ𝑞−1
𝑚+1 sont 

données par :∀𝑗, 𝑘 = 0, … , 𝑞 − 2 ; ∀𝑎, 𝑏 = 𝑞, … , 𝑚, 

𝛻𝜉𝜉 = 𝜉 ;     𝛻𝜉𝑋𝑗 = 𝛻𝑋𝑗𝜉 = 𝑋𝑗  ; 

𝛻𝜉𝑌𝑎 = 𝛻𝑌𝑎𝜉 = 𝑌𝑎  ; 

𝛻𝑋𝑗𝑋𝑗 = −
1

2
𝜃 [(𝑥𝑞−1)2 + (𝑥𝑗)

2
] 𝜉 + 𝑥𝑞−1 ∑ 𝑥𝑖𝑋𝑖

𝑞−2

𝑖=0(≠𝑗)

 

𝛻𝑋𝑗𝑋𝑘 = −
1

2
𝜃𝑥𝑗𝑥𝑘𝜉 − 𝑥𝑗𝑥𝑞−1𝑋𝑘  ,   𝑗 ≠ 𝑘 

𝛻𝑌𝑎𝑌𝑎 = −
1

2
𝜃[(𝑥𝑚+1)2 + (𝑥𝑎)2]𝜉 + 𝑥𝑚+1 ∑ 𝑥𝑏𝑌𝑏

𝑚

𝑏=0(≠𝑎)

 

𝛻𝑌𝑎𝑌𝑏 = −
1

2
𝜃𝑥𝑎𝑥𝑏𝜉 − 𝑥𝑎𝑥𝑚+1𝑌𝑏 , 𝑎 ≠ 𝑏 
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Fait 5 : Calcul des 𝝉(𝑿) 

Quel que soit 𝑋 ∈ 𝛤(𝑇𝛬𝑞−1
𝑚+1), on a 

𝜏(𝑋) = 𝑔̅(𝛻̅𝑋𝑁, 𝜉) = −𝑔̅(𝑁, 𝛻̅𝑋𝜉) = −𝑔̅(𝑁, 𝑋) 

Ainsi localement la seule composante non nulle de la 1-

forme  𝜏  est  𝜏(𝜉) = −1. 

Fait 6 : Calcul de la courbure 𝑹(𝑿 , 𝒀 )𝒁 

En utilisant la relation (4.14), localement les seules 

composantes non nulles de la courbure de Riemann sont :∀𝑗, 𝑘, 

𝑙 = 0, … , 𝑞 − 2 ; ∀𝑎, 𝑏,  𝑐 = 𝑞, … , 𝑚,  

(1)𝑅(𝑋𝑗 , 𝑋𝑘)𝑋𝑙 =
1

2
𝜃 (𝑥𝑗𝑥𝑙𝑋𝑘 − 𝑥

𝑘𝑥𝑙𝑋𝑗),  

pour  𝑗, 𝑘, 𝑙 différents ; 

(2) 𝑅(𝑋𝑗 , 𝑋𝑘)𝑋𝑗 = −𝑅(𝑋𝑘 , 𝑋𝑗)𝑋𝑗 = 

1

2
𝜃 {((𝑥𝑗)

2
+ (𝑥𝑞−1)2) 𝑋𝑘 − (𝑥

𝑗𝑥𝑘)𝑋𝑗} 

pour 𝑗 ≠ 𝑘 

(3) 𝑅(𝑌𝑎, 𝑌𝑏)𝑋𝑐 =
1

2
𝜃 ( 𝑥𝑏𝑥𝑐𝑌𝑎 − 𝑥

𝑎𝑥𝑐𝑌𝑏), 

pour 𝑎, 𝑏, 𝑐 différents ; 

(4) 𝑅(𝑌𝑎, 𝑌𝑏)𝑌𝑎 = −𝑅(𝑌𝑏 , 𝑌𝑎)𝑌𝑎 =  

1

2
𝜃{(𝑥𝑎𝑥𝑏)𝑌𝑎 − ((𝑥

𝑎)2 + (𝑥𝑚+1)2)𝑌𝑏} 

    ,  𝑎 ≠ 𝑏 

(5) 𝑅(𝑌𝑎, 𝑋𝑗)𝑋𝑘 = −
1

2
𝜃𝑥𝑗𝑥𝑘𝑌𝑎 = −𝑅(𝑋𝑗 , 𝑌𝑎)𝑋𝑘  

 pour 𝑗 ≠ 𝑘 ; 

(6) 𝑅(𝑋𝑗 , 𝑌𝑎)𝑌𝑏 =
1

2
𝜃𝑥𝑎𝑥𝑏𝑋𝑗 = −𝑅(𝑌𝑎, 𝑋𝑗)𝑌𝑏 

pour 𝑎 ≠ 𝑏 ; 

CONCLUSION 

La technique développée par BENJACU et DUGGAL [1966]  

permet de contourner le défaut de la normale 𝑇𝑀⊥ qui se 

retrouve contenue dans 𝑇𝑀 pour les hypersurfaces nulles. 

Malheureusement cette technique crée une autre difficulté, la 

multiplicité du fibré vectoriel écran 𝑆(𝑇𝑀). Il est donc impérieux 

de réfléchir en terme d’une distribution écran de référence 

(écran canonique) et d’étudier les objets géométriques induits 

relatifs à cette distribution. 

Dans cet article nous avons considéré la construction de 

l’écran canonique des hypersurfaces nulles d’un espace semi-

euclidien, en particulier celui du cône de lumière Λ𝑞−1
𝑚+1 de ℝ𝑞

𝑚+2. 

Les objets géométriques induits sur ce cône ont été construits 

localement et globalement.  Les propriétés géométriques de ce 

cône ont été étudiées en généralisant certains résultats connus 

utilisant les objets géométriques induits. Il est à remarquer, après 

cette étude, que l’écran canonique du cône admet des propriétés 

géométriques assez préférées (l’intégrabilité, la conformité, 

l’ombilicité) qui ont permis  une bonne description géométrique 

de ce cône de lumière. 

Dans le futur, on s’intéressera sur d’autres construction des 

fibrés vectoriels écrans de référence, entre autre l’écran naturelle 

sur une hypersurface de Monge. Aussi construire analytiquement 

l’écran canonique pour le cas général des hypersurfaces nulles 

vérifiant les conditions d’admissibilité de l’écran canonique. 

RESUME 

Dans cette étude, nous avons présenté la construction de 

l’écran canonique pour une classe des hypersurfaces de type 

lumière des espaces semi-euclidiens, en particulier celui du cône 

de lumière, suivant l’approche de BEJANCU et DUGGAL. Nous 

avons démontré l’intégrabilité. 

(Théorème 4.1) , la conformité (Théorème 4.3) et l’ombilicité 

(Théorème 4.4) de l’écran canonique du cône de lumière de 

l’espace semi-euclidien ℝ𝑞
𝑚+2 en général. Nous avons enfin 

déduit les objets géométriques induits et les propriétés 

géométriques de ce cône de lumière. 

Mots clés 

Distribution à écran canonique ; Hypersurface à écran conforme ; 
Ecran intégrable ; Hypersurface totalement ombilique. 
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